When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cylindrical harmonics - Wikipedia

    en.wikipedia.org/wiki/Cylindrical_harmonics

    The cylindrical harmonics for (k,n) are now the product of these solutions and the general solution to Laplace's equation is given by a linear combination of these solutions: (,,) = | | (,) (,) where the () are constants with respect to the cylindrical coordinates and the limits of the summation and integration are determined by the boundary ...

  3. Codes for electromagnetic scattering by cylinders - Wikipedia

    en.wikipedia.org/wiki/Codes_for_electromagnetic...

    Mie solution (infinite series) to scattering, absorption and phase function of electromagnetic waves by a homogeneous cylinder. 1992 SCAOBLIQ2.FOR H. A. Yousif and E. Boutros [3] Fortran Cylinder, oblique incidence. 2002 Mackowski D. Mackowski Fortran Cylinder, oblique incidence. 2008 jMie2D: Jeffrey M. McMahon C++ Mie solution. Open-source ...

  4. Potential flow around a circular cylinder - Wikipedia

    en.wikipedia.org/wiki/Potential_flow_around_a...

    The problem of potential compressible flow over circular cylinder was first studied by O. Janzen in 1913 [4] and by Lord Rayleigh in 1916 [5] with small compressibility effects. Here, the small parameter is the square of the Mach number M 2 = U 2 / c 2 ≪ 1 {\displaystyle \mathrm {M} ^{2}=U^{2}/c^{2}\ll 1} , where c is the speed of sound .

  5. Green's function for the three-variable Laplace equation

    en.wikipedia.org/wiki/Green's_function_for_the...

    They have solved numerous problems which exhibit circular cylindrical symmetry employing the toroidal functions. The above expressions for the Green's function for the three-variable Laplace operator are examples of single summation expressions for this Green's function. There are also single-integral expressions for this Green's function.

  6. Robot kinematics - Wikipedia

    en.wikipedia.org/wiki/Robot_kinematics

    For serial manipulators this requires solution of a set of polynomials obtained from the kinematics equations and yields multiple configurations for the chain. The case of a general 6R serial manipulator (a serial chain with six revolute joints ) yields sixteen different inverse kinematics solutions, which are solutions of a sixteenth degree ...

  7. Inverse kinematics - Wikipedia

    en.wikipedia.org/wiki/Inverse_kinematics

    An analytic solution to an inverse kinematics problem is a closed-form expression that takes the end-effector pose as input and gives joint positions as output, = (). Analytical inverse kinematics solvers can be significantly faster than numerical solvers and provide more than one solution, but only a finite number of solutions, for a given end ...

  8. Exact solutions in general relativity - Wikipedia

    en.wikipedia.org/wiki/Exact_solutions_in_general...

    For example, the Ernst equation is a nonlinear partial differential equation somewhat resembling the nonlinear Schrödinger equation (NLS). But recall that the conformal group on Minkowski spacetime is the symmetry group of the Maxwell equations. Recall too that solutions of the heat equation can be found by assuming a scaling Ansatz.

  9. Stokes problem - Wikipedia

    en.wikipedia.org/wiki/Stokes_problem

    This is considered one of the simplest unsteady problems that has an exact solution for the Navier–Stokes equations. [1] [2] In turbulent flow, this is still named a Stokes boundary layer, but now one has to rely on experiments, numerical simulations or approximate methods in order to obtain useful information on the flow.