Search results
Results From The WOW.Com Content Network
The cylindrical harmonics for (k,n) are now the product of these solutions and the general solution to Laplace's equation is given by a linear combination of these solutions: (,,) = | | (,) (,) where the () are constants with respect to the cylindrical coordinates and the limits of the summation and integration are determined by the boundary ...
The problem of potential compressible flow over circular cylinder was first studied by O. Janzen in 1913 [4] and by Lord Rayleigh in 1916 [5] with small compressibility effects. Here, the small parameter is the square of the Mach number M 2 = U 2 / c 2 ≪ 1 {\displaystyle \mathrm {M} ^{2}=U^{2}/c^{2}\ll 1} , where c is the speed of sound .
The problem was formulated and solved by Hermann Schlichting in 1933, [1] who also formulated the corresponding planar Bickley jet problem in the same paper. [2] The Landau-Squire jet from a point source is an exact solution of Navier-Stokes equations , which is valid for all Reynolds number, reduces to Schlichting jet solution at high Reynolds ...
The free-space circular cylindrical Green's function (see below) is given in terms of the reciprocal distance between two points. The expression is derived in Jackson's Classical Electrodynamics. [1] Using the Green's function for the three-variable Laplace operator, one can integrate the Poisson equation in
In fluid dynamics, Bickley jet is a steady two-dimensional laminar plane jet with large jet Reynolds number emerging into the fluid at rest, named after W. G. Bickley, who gave the analytical solution in 1937, [1] to the problem derived by Schlichting in 1933 [2] and the corresponding problem in axisymmetric coordinates is called as Schlichting jet.
This is considered one of the simplest unsteady problems that has an exact solution for the Navier–Stokes equations. [1] [2] In turbulent flow, this is still named a Stokes boundary layer, but now one has to rely on experiments, numerical simulations or approximate methods in order to obtain useful information on the flow.
An analytic solution to an inverse kinematics problem is a closed-form expression that takes the end-effector pose as input and gives joint positions as output, = (). Analytical inverse kinematics solvers can be significantly faster than numerical solvers and provide more than one solution, but only a finite number of solutions, for a given end ...
A fundamental tool in robot kinematics is the kinematics equations of the kinematic chains that form the robot. These non-linear equations are used to map the joint parameters to the configuration of the robot system. Kinematics equations are also used in biomechanics of the skeleton and computer animation of articulated characters.