Search results
Results From The WOW.Com Content Network
Sodium oxide is a chemical compound with the formula Na 2 O.It is used in ceramics and glasses.It is a white solid but the compound is rarely encountered. Instead "sodium oxide" is used to describe components of various materials such as glasses and fertilizers which contain oxides that include sodium and other elements.
Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer
The molar heat capacity generally increases with the molar mass, often varies with temperature and pressure, and is different for each state of matter. For example, at atmospheric pressure, the (isobaric) molar heat capacity of water just above the melting point is about 76 J⋅K −1 ⋅mol −1 , but that of ice just below that point is about ...
Table of specific heat capacities at 25 °C (298 K) unless otherwise noted. [citation needed] Notable minima and maxima are shown in maroon. Substance Phase Isobaric mass heat capacity c P J⋅g −1 ⋅K −1 Molar heat capacity, C P,m and C V,m J⋅mol −1 ⋅K −1 Isobaric volumetric heat capacity C P,v J⋅cm −3 ⋅K −1 Isochoric ...
Molecular weight (M.W.) (for molecular compounds) and formula weight (F.W.) (for non-molecular compounds), are older terms for what is now more correctly called the relative molar mass (M r). [8] This is a dimensionless quantity (i.e., a pure number, without units) equal to the molar mass divided by the molar mass constant .
Sodium peroxide is an inorganic compound with the formula Na 2 O 2.This yellowish solid is the product of sodium ignited in excess oxygen. [3] It is a strong base. This metal peroxide exists in several hydrates and peroxyhydrates including Na 2 O 2 ·2H 2 O 2 ·4H 2 O, Na 2 O 2 ·2H 2 O, Na 2 O 2 ·2H 2 O 2, and Na 2 O 2 ·8H 2 O. [4] The octahydrate, which is simple to prepare, is white, in ...
In engineering, the mass transfer coefficient is a diffusion rate constant that relates the mass transfer rate, mass transfer area, and concentration change as driving force: [1] = ˙ Where: is the mass transfer coefficient [mol/(s·m 2)/(mol/m 3)], or m/s
The basic mechanisms and mathematics of heat, mass, and momentum transport are essentially the same. Among many analogies (like Reynolds analogy , Prandtl–Taylor analogy) developed to directly relate heat transfer coefficients, mass transfer coefficients and friction factors, Chilton and Colburn J-factor analogy proved to be the most accurate.