Ads
related to: squirrel cage wind generator kit installation
Search results
Results From The WOW.Com Content Network
Squirrel-cage induction motors are very prevalent in industry, in sizes from below 1 kilowatt (1.3 hp) up to tens of megawatts (tens-of-thousand horsepower). They are simple, rugged, and self-starting, and maintain a reasonably constant speed from light load to full load, set by the frequency of the power supply and the number of poles of the ...
This is useful for large variable speed wind turbines, because wind speed can change suddenly. When a gust of wind hits a wind turbine, the blades try to speed up, but a synchronous generator is locked to the speed of the power grid and cannot speed up. So large forces are developed in the hub, gearbox, and generator as the power grid pushes back.
A blade is made in a part-circular cross-section (pipe cut over its whole length). The ends of the blades are welded to disks to form a cage like a hamster cage and are sometimes called "squirrel cage turbines"; instead of the bars, the turbine has the trough-shaped steel blades. The water flows first from the outside of the turbine to its inside.
A fully rated converter can either be an induction generator or a permanent magnet generator. Unlike the DFIG, the FRC can employ a squirrel cage rotor in the generator; an example of this is the Siemens SWT 3.6-107, which is termed the industry workhorse. [7] An example of a permanent magnet generator is the Siemens SWT-2.3-113. [8]
An example of a wind turbine, this 3 bladed turbine is the classic design of modern wind turbines Wind turbine components : 1-Foundation, 2-Connection to the electric grid, 3-Tower, 4-Access ladder, 5-Wind orientation control (Yaw control), 6-Nacelle, 7-Generator, 8-Anemometer, 9-Electric or Mechanical Brake, 10-Gearbox, 11-Rotor blade, 12-Blade pitch control, 13-Rotor hub
An industrial electric motor . An electric motor is a machine that converts electrical energy into mechanical energy.Most electric motors operate through the interaction between the motor's magnetic field and electric current in a wire winding to generate force in the form of torque applied on the motor's shaft.
Bars and rings of the damper (amortisseur) winding of an AC generator (General Electric, early 20th century). Note the gaps in the cage along the quadrature axes. The damper winding (also amortisseur winding [1]) is a squirrel-cage-like winding on the rotor of a typical synchronous electric machine. It is used to dampen the transient ...
The effect is more pronounced in doubly-fed induction generators (DFIG), [3] which have two sets of powered magnetic windings, than in squirrel-cage induction generators which have only one. Synchronous generators may slip and become unstable, if the voltage of the stator winding goes below a certain threshold.