Search results
Results From The WOW.Com Content Network
Schematic representations of a tilt boundary (top) and a twist boundary between two idealised grains. The simplest boundary is that of a tilt boundary where the rotation axis is parallel to the boundary plane. This boundary can be conceived as forming from a single, contiguous crystallite or grain which is gradually bent by some external force ...
They are formed by a local deviation of the stacking sequence of layers in a crystal. An example would be the ABABCABAB stacking sequence. A twin boundary is a defect that introduces a plane of mirror symmetry in the ordering of a crystal. For example, in cubic close-packed crystals, the stacking sequence of a twin boundary would be ABCABCBACBA.
A linear variation has been observed between twin thickness, stacking fault energy and grain size, [47] and to a lesser degree, the stress state of the twinning grain (Schmid Factor). [48] The twin thickness saturated once a critical residual dislocations’ density reached the coherent twin-parent crystal boundary. [33] [49]
Grain boundary engineering involves manipulating the grain boundary structure and energy to enhance mechanical properties. By controlling the interfacial energy, it is possible to engineer materials with desirable grain boundary characteristics, such as increased interfacial area, higher grain boundary density, or specific grain boundary types ...
In a TEM, bright field imaging is one technique used to identify the location of stacking faults. Typical image of stacking fault is dark with bright fringes near a low-angle grain boundary, sandwiched by dislocations at the end of the stacking fault. Fringes indicate that the stacking fault is at an incline with respect to the viewing plane. [3]
A dislocation can ideally move through a crystal until it reaches a grain boundary (the boundary between two crystals). When it reaches a grain boundary, the dislocation will disappear. In that case the whole crystal is sheared a little (needs a reference). There are however different ways in which the movement of a dislocation can be slowed or ...
The lithosphere–asthenosphere boundary (referred to as the LAB by geophysicists) represents a mechanical difference between layers in Earth's inner structure. Earth's inner structure can be described both chemically ( crust , mantle , and core ) and mechanically.
Grain boundary sliding is the process by which grains move to prevent separation at grain boundaries. [1] This process typically occurs on timescales significantly faster than that of mass diffusion (an order of magnitude quicker). Because of this, the rate of grain boundary sliding is typically irrelevant to determining material processes.