Search results
Results From The WOW.Com Content Network
In the study of heat conduction, the Fourier number, is the ratio of time, , to a characteristic time scale for heat diffusion, . This dimensionless group is named in honor of J.B.J. Fourier , who formulated the modern understanding of heat conduction. [ 1 ]
Some of the most common examples of transport analysis in engineering are seen in the fields of process, chemical, biological, [1] and mechanical engineering, but the subject is a fundamental component of the curriculum in all disciplines involved in any way with fluid mechanics, heat transfer, and mass transfer.
A direct practical application of the heat equation, in conjunction with Fourier theory, in spherical coordinates, is the prediction of thermal transfer profiles and the measurement of the thermal diffusivity in polymers (Unsworth and Duarte). This dual theoretical-experimental method is applicable to rubber, various other polymeric materials ...
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
For heat transfer, the Péclet number is defined as P e L = L u α = R e L P r , {\displaystyle \mathrm {Pe} _{L}={\frac {Lu}{\alpha }}=\mathrm {Re} _{L}\,\mathrm {Pr} ,} where L is the characteristic length , u the local flow velocity , D the mass diffusion coefficient , Re the Reynolds number, Sc the Schmidt number, Pr the Prandtl number, and ...
The heat transfer coefficient has SI units in watts per square meter per kelvin (W/(m 2 K)). The overall heat transfer rate for combined modes is usually expressed in terms of an overall conductance or heat transfer coefficient, U. In that case, the heat transfer rate is: ˙ = where (in SI units):
The macroscopic energy equation for infinitesimal volume used in heat transfer analysis is [6] = +, ˙, where q is heat flux vector, −ρc p (∂T/∂t) is temporal change of internal energy (ρ is density, c p is specific heat capacity at constant pressure, T is temperature and t is time), and ˙ is the energy conversion to and from thermal ...
These first Heisler–Gröber charts were based upon the first term of the exact Fourier series solution for an infinite plane wall: (,) = = [ + ], [1]where T i is the initial uniform temperature of the slab, T ∞ is the constant environmental temperature imposed at the boundary, x is the location in the plane wall, λ is the root of λ * tan λ = Bi, and α is thermal diffusivity.