Search results
Results From The WOW.Com Content Network
In the physical sciences, the wavenumber (or wave number), also known as repetency, [1] is the spatial frequency of a wave. Ordinary wavenumber is defined as the number of wave cycles divided by length; it is a physical quantity with dimension of reciprocal length , expressed in SI units of cycles per metre or reciprocal metre (m −1 ).
The group velocity of a wave is the velocity with which the overall envelope shape of the wave's amplitudes—known as the modulation or envelope of the wave—propagates through space. For example, if a stone is thrown into the middle of a very still pond, a circular pattern of waves with a quiescent center appears in the water, also known as ...
Wave speed is a wave property, which may refer to absolute value of: phase velocity , the velocity at which a wave phase propagates at a certain frequency group velocity , the propagation velocity for the envelope of wave groups and often of wave energy, different from the phase velocity for dispersive waves
In the context of electromagnetics and optics, the frequency is some function ω(k) of the wave number, so in general, the phase velocity and the group velocity depend on specific medium and frequency. The ratio between the speed of light c and the phase velocity v p is known as the refractive index, n = c / v p = ck / ω.
For an incident wave traveling from one medium (where the wave speed is c 1) to another medium (where the wave speed is c 2), one part of the wave will transmit into the second medium, while another part reflects back into the other direction and stays in the first medium. The amplitude of the transmitted wave and the reflected wave can be ...
The part between square brackets is the slowly varying amplitude of the group, with group wave number 1 / 2 ( k 1 − k 2 ) and group angular frequency 1 / 2 ( ω 1 − ω 2 ). As a result, the group velocity is, for the limit k 1 → k 2 : [10] [11]
is the speed of light (i.e. phase velocity) in a medium with permeability μ, and permittivity ε, and ∇ 2 is the Laplace operator. In a vacuum, v ph = c 0 = 299 792 458 m/s, a fundamental physical constant. [1] The electromagnetic wave equation derives from Maxwell's equations.
The top electron has twice the momentum, while the bottom electron has half. Note that as the momentum increases, the phase velocity decreases down to c, whereas the group velocity increases up to c, until the wave packet and its phase maxima move together near the speed of light, whereas the wavelength continues to decrease without bound. Both ...