When.com Web Search

  1. Ads

    related to: bi vectors in geometry ppt powerpoint notes sample

Search results

  1. Results From The WOW.Com Content Network
  2. Bivector - Wikipedia

    en.wikipedia.org/wiki/Bivector

    The non-zero vectors in Cl n (R) or R n are associated with points in the projective space so vectors that differ only by a scale factor, so their exterior product is zero, map to the same point. Non-zero simple bivectors in ⋀ 2 R n represent lines in RP n −1 , with bivectors differing only by a (positive or negative) scale factor ...

  3. Covariance and contravariance of vectors - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_contra...

    Likewise, vectors whose components are contravariant push forward under smooth mappings, so the operation assigning the space of (contravariant) vectors to a smooth manifold is a covariant functor. Secondly, in the classical approach to differential geometry, it is not bases of the tangent bundle that are the most primitive object, but rather ...

  4. Sylvester's triangle problem - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_triangle_problem

    sum of three equal lengthed vectors. Sylvester's theorem or Sylvester's formula describes a particular interpretation of the sum of three pairwise distinct vectors of equal length in the context of triangle geometry. It is also referred to as Sylvester's (triangle) problem in literature, when it is given as a problem rather than a theorem.

  5. Euclidean planes in three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_planes_in_three...

    where s and t range over all real numbers, v and w are given linearly independent vectors defining the plane, and r 0 is the vector representing the position of an arbitrary (but fixed) point on the plane. The vectors v and w can be visualized as vectors starting at r 0 and pointing in different directions along the plane.

  6. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    A space curve; the vectors T, N, B; and the osculating plane spanned by T and N. In differential geometry, the Frenet–Serret formulas describe the kinematic properties of a particle moving along a differentiable curve in three-dimensional Euclidean space, or the geometric properties of the curve itself irrespective of any motion.

  7. Bidirectional reflectance distribution function - Wikipedia

    en.wikipedia.org/wiki/Bidirectional_reflectance...

    Diagram showing vectors used to define the BRDF. All vectors are unit length. points toward the light source. points toward the viewer (camera). is the surface normal.. The bidirectional reflectance distribution function (BRDF), symbol (,), is a function of four real variables that defines how light from a source is reflected off an opaque surface. It is employed in the optics of real-world ...

  8. Rodrigues' rotation formula - Wikipedia

    en.wikipedia.org/wiki/Rodrigues'_rotation_formula

    Vector geometry of Rodrigues' rotation formula, as well as the decomposition into parallel and perpendicular components. Let k be a unit vector defining a rotation axis, and let v be any vector to rotate about k by angle θ ( right hand rule , anticlockwise in the figure), producing the rotated vector v rot {\displaystyle \mathbb {v} _{\text ...

  9. Metric signature - Wikipedia

    en.wikipedia.org/wiki/Metric_signature

    The signature of a metric tensor is defined as the signature of the corresponding quadratic form. [2] It is the number (v, p, r) of positive, negative and zero eigenvalues of any matrix (i.e. in any basis for the underlying vector space) representing the form, counted with their algebraic multiplicities.