Search results
Results From The WOW.Com Content Network
Process annealing, also called intermediate annealing, subcritical annealing, or in-process annealing, is a heat treatment cycle that restores some of the ductility to a product being cold-worked so it can be cold-worked further without breaking.
Annealing is a process of slowly cooling hot glass objects after they have been formed, to relieve residual internal stresses introduced during manufacture. Especially for smaller, simpler objects, annealing may be incidental to the process of manufacture, but in larger or more complex products it commonly demands a special process of annealing in a temperature-controlled kiln known as a lehr. [1]
Solvent vapor annealing (SVA) is a widely used technique for controlling the morphology and ordering of block copolymer (BCP) films. [1] [2] [3] By controlling the block ratio (f = NA/N), spheres, cylinders, gyroids, and lamellae structures can be generated by forming a swollen and mobile layer of thin-film from added solvent vapor to facilitate the self-assembly of the polymer blocks. [4]
Ferrous alloys are usually either "full annealed" or "process annealed". Full annealing requires very slow cooling rates, in order to form coarse pearlite. In process annealing, the cooling rate may be faster; up to, and including normalizing. The main goal of process annealing is to produce a uniform microstructure.
Annealing may refer to: Annealing (biology), in genetics; Annealing (glass), heating a piece of glass to remove stress; Annealing (materials science), a heat treatment that alters the microstructure of a material; Quantum annealing, a method for solving combinatorial optimisation problems and ground states of glassy systems
During ion implantation process, the crystal substrate is damaged due to bombardment with high energy ions. The damage caused can be repaired by subjecting the crystal to high temperature. This process is called annealing. Furnace anneals may be integrated into other furnace processing steps, such as oxidations, or may be processed on their own.
In metallurgy, recovery is a process by which a metal or alloy's deformed grains can reduce their stored energy by the removal or rearrangement of defects in their crystal structure. These defects, primarily dislocations , are introduced by plastic deformation of the material and act to increase the yield strength of a material.
This process is easily observed while working a material (by a process of cold working in metals). Theoretically, the strength of a material with no dislocations will be extremely high ( σ ≈ G 10 {\displaystyle \sigma \approx {\frac {G}{10}}} ) because plastic deformation would require the breaking of many bonds simultaneously.