Search results
Results From The WOW.Com Content Network
Thomson's model marks the moment when the development of atomic theory passed from chemists to physicists. While atomic theory was widely accepted by chemists by the end of the 19th century, physicists remained skeptical because the atomic model lacked any properties which concerned their field, such as electric charge, magnetic moment, volume, or absolute mass.
Sir Joseph John Thomson (18 December 1856 ... and that the corpuscles were their building blocks. In 1904, Thomson suggested a model of the atom, ...
The Thomson problem is a natural consequence of J. J. Thomson's plum pudding model in the absence of its uniform positive background charge. [ 12 ] "No fact discovered about the atom can be trivial, nor fail to accelerate the progress of physical science, for the greater part of natural philosophy is the outcome of the structure and mechanism ...
Thomson further explained that ions are atoms that have a surplus or shortage of electrons. [53] Thomson's model is popularly known as the plum pudding model, based on the idea that the electrons are distributed throughout the sphere of positive charge with the same density as raisins in a plum pudding. Neither Thomson nor his colleagues ever ...
[3] [4] In it, Thomson developed a mathematical treatment of the motions of William Thomson and Peter Tait's atoms. [5] When Thomson later discovered the electron (for which he received a Nobel Prize), he abandoned his "nebular atom" hypothesis based on the vortex atomic theory, in favour of his plum pudding model.
The prevailing model of atomic structure before Rutherford's experiments was devised by J. J. Thomson. [1]: 123 Thomson had discovered the electron through his work on cathode rays [2] and proposed that they existed within atoms, and an electric current is electrons hopping from one atom to an adjacent one in a series.
In 1910, Arthur Erich Haas further developed J. J. Thomson's atomic model in a paper [8] that outlined a treatment of the hydrogen atom involving quantization of electronic orbitals, thus anticipating the Bohr model (1913) by three years.
The recent discovery by J. J. Thomson of the negatively charged electron implied that a neutral atom must also contain an opposite positive charge. In 1904, Thomson suggested that the atom was a sphere of uniform positive electrification, with electrons scattered through it like plums in a pudding, giving rise to the term plum pudding model .