Search results
Results From The WOW.Com Content Network
In kinetic theory of gases, the mean free path is the average distance traveled by a molecule, or a number of molecules per volume, ...
In practice, the diameter of gas molecules is not well defined. In fact, the kinetic diameter of a molecule is defined in terms of the mean free path. Typically, gas molecules do not behave like hard spheres, but rather attract each other at larger distances and repel each other at shorter distances, as can be described with a Lennard-Jones ...
Kinetic diameter is related to the mean free path of molecules in a gas. Mean free path is the average distance that a particle will travel without collision. For a fast moving particle (that is, one moving much faster than the particles it is moving through) the kinetic diameter is given by, [2] = where,
Gas kinetics is a science in the branch of fluid dynamics, concerned with the study of motion of gases and its effects on physical systems.Based on the principles of fluid mechanics and thermodynamics, gas dynamics arises from the studies of gas flows in transonic and supersonic flights.
The mean free path of the molecule is the product of the average speed and the mean free time. [1] These concepts are used in the kinetic theory of gases to compute transport coefficients such as the viscosity. [2] In a gas the mean free path may be much larger than the
Kinetic theory of matter: A general account of the properties of matter, including solids liquids and gases, based around the idea that heat or temperature is a manifestation of atoms and molecules in constant agitation. Kinetic theory of gases, an account of gas properties in terms of motion and interaction of submicroscopic particles in gases
Effusion from an equilibrated container into outside vacuum can be calculated based on kinetic theory. [2] The number of atomic or molecular collisions with a wall of a container per unit area per unit time (impingement rate) is given by: =. assuming mean free path is much greater than pinhole diameter and the gas can be treated as an ideal gas.
Schematic drawing of a molecule in a cylindrical pore in the case of Knudsen diffusion; are indicated the pore diameter (d) and the free path of the particle (l).Knudsen diffusion, named after Martin Knudsen, is a means of diffusion that occurs when the scale length of a system is comparable to or smaller than the mean free path of the particles involved.