Search results
Results From The WOW.Com Content Network
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications.
There are several closely related functions called Jacobi theta functions, and many different and incompatible systems of notation for them. One Jacobi theta function (named after Carl Gustav Jacob Jacobi) is a function defined for two complex variables z and τ, where z can be any complex number and τ is the half-period ratio, confined to the upper half-plane, which means it has a positive ...
Showing that () = (the polynomial of x of is 1) is technical.One way is to set = and show both the numerator and the denominator of = = = (+ ())are weight 1/2 modular under , since they are also 1-periodic and bounded on the upper half plane the quotient has to be constant so that () = =.
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications.
In mathematics, particularly q-analog theory, the Ramanujan theta function generalizes the form of the Jacobi theta functions, while capturing their general properties. In particular, the Jacobi triple product takes on a particularly elegant form when written in terms of the Ramanujan theta. The function is named after mathematician Srinivasa ...
In mathematics, the q-theta function (or modified Jacobi theta function) is a type of q-series which is used to define elliptic hypergeometric series. [ 1 ] [ 2 ] It is given by θ ( z ; q ) := ∏ n = 0 ∞ ( 1 − q n z ) ( 1 − q n + 1 / z ) {\displaystyle \theta (z;q):=\prod _{n=0}^{\infty }(1-q^{n}z)\left(1-q^{n+1}/z\right)}
This formula applies to any algebraic equation of any degree without need for a Tschirnhaus transformation or any other manipulation to bring the equation into a specific normal form, such as the Bring–Jerrard form for the quintic. However, application of this formula in practice is difficult because the relevant hyperelliptic integrals and ...
In mathematics, the Riemann–Siegel theta function is defined in terms of the gamma function as = ((+)) for real values of t.Here the argument is chosen in such a way that a continuous function is obtained and () = holds, i.e., in the same way that the principal branch of the log-gamma function is defined.