Search results
Results From The WOW.Com Content Network
where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...
In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...
where: k 1 is the rate coefficient for the reaction that consumes A and B; k −1 is the rate coefficient for the backwards reaction, which consumes P and Q and produces A and B. The constants k 1 and k −1 are related to the equilibrium coefficient for the reaction (K) by the following relationship (set v=0 in balance):
The rate for a bimolecular gas-phase reaction, A + B → product, predicted by collision theory is [6] = = ()where: k is the rate constant in units of (number of molecules) −1 ⋅s −1 ⋅m 3.
The general form of the Eyring–Polanyi equation somewhat resembles the Arrhenius equation: = ‡ where is the rate constant, ‡ is the Gibbs energy of activation, is the transmission coefficient, is the Boltzmann constant, is the temperature, and is the Planck constant.
For a reversible reaction, the equilibrium constant can be measured at a variety of temperatures. This data can be plotted on a graph with ln K eq on the y-axis and 1 / T on the x axis. The data should have a linear relationship, the equation for which can be found by fitting the data using the linear form of the Van 't Hoff equation
k is the rate constant for the electrode reaction in s −1, F is the Faraday constant, C is the reactive species concentration at the electrode surface in mol/m 2, the plus sign under the exponent refers to an anodic reaction, and a minus sign to a cathodic reaction, R is the universal gas constant.
The standard rate constant is an important descriptor of electrode behavior, independent of concentrations. It is a measure of the rate at which the system will approach equilibrium. In the limit as k 0 → 0 {\displaystyle k^{0}\rightarrow 0} , the electrode becomes an ideal polarizable electrode and will behave electrically as an open circuit ...