Search results
Results From The WOW.Com Content Network
In numerical analysis and scientific computing, a sparse matrix or sparse array is a matrix in which most of the elements are zero. [1] There is no strict definition regarding the proportion of zero-value elements for a matrix to qualify as sparse but a common criterion is that the number of non-zero elements is roughly equal to the number of ...
CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3] CuPy shares the same API set as NumPy and SciPy, allowing it to be a drop-in replacement to run NumPy/SciPy code on GPU.
uBLAS is a C++ template class library that provides BLAS level 1, 2, 3 functionality for dense, packed and sparse matrices. Dlib: Davis E. King C++ 2006 19.24.2 / 05.2023 Free Boost C++ template library; binds to optimized BLAS such as the Intel MKL; Includes matrix decompositions, non-linear solvers, and machine learning tooling Eigen: Benoît ...
PETSc includes a large suite of parallel linear and nonlinear equation solvers that are easily used in application codes written in C, C++, Fortran and now Python. PETSc provides many of the mechanisms needed within parallel application code, such as simple parallel matrix and vector assembly routines that allow the overlap of communication and ...
Random projection is computationally simple: form the random matrix "R" and project the data matrix X onto K dimensions of order (). If the data matrix X is sparse with about c nonzero entries per column, then the complexity of this operation is of order O ( c k N ) {\displaystyle O(ckN)} .
Moreover, complementary Python packages are available; SciPy is a library that adds more MATLAB-like functionality and Matplotlib is a plotting package that provides MATLAB-like plotting functionality. Although matlab can perform sparse matrix operations, numpy alone cannot perform such operations and requires the use of the scipy.sparse library.
Hermes Project: C++/Python library for rapid prototyping of space- and space-time adaptive hp-FEM solvers. IML++ is a C++ library for solving linear systems of equations, capable of dealing with dense, sparse, and distributed matrices. IT++ is a C++ library for linear algebra (matrices and vectors), signal processing and communications ...
In the field of statistical learning theory, matrix regularization generalizes notions of vector regularization to cases where the object to be learned is a matrix. The purpose of regularization is to enforce conditions, for example sparsity or smoothness, that can produce stable predictive functions.