When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    Qualitative research approaches sample size determination with a distinctive methodology that diverges from quantitative methods. Rather than relying on predetermined formulas or statistical calculations, it involves a subjective and iterative judgment throughout the research process.

  3. Sampling (statistics) - Wikipedia

    en.wikipedia.org/wiki/Sampling_(statistics)

    Formulas, tables, and power function charts are well known approaches to determine sample size. Steps for using sample size tables: Postulate the effect size of interest, α, and β. Check sample size table [20] Select the table corresponding to the selected α; Locate the row corresponding to the desired power; Locate the column corresponding ...

  4. Effect size - Wikipedia

    en.wikipedia.org/wiki/Effect_size

    In statistics, an effect size is a value measuring the strength of the relationship between two variables in a population, or a sample-based estimate of that quantity. It can refer to the value of a statistic calculated from a sample of data, the value of one parameter for a hypothetical population, or to the equation that operationalizes how statistics or parameters lead to the effect size ...

  5. Fisher's exact test - Wikipedia

    en.wikipedia.org/wiki/Fisher's_exact_test

    Fisher's exact test (also Fisher-Irwin test) is a statistical significance test used in the analysis of contingency tables. [1] [2] [3] Although in practice it is employed when sample sizes are small, it is valid for all sample sizes.

  6. F-test - Wikipedia

    en.wikipedia.org/wiki/F-test

    where is the j th observation in the i th out of groups and is the overall sample size. This F -statistic follows the F -distribution with degrees of freedom d 1 = K − 1 {\displaystyle d_{1}=K-1} and d 2 = N − K {\displaystyle d_{2}=N-K} under the null hypothesis.

  7. Design effect - Wikipedia

    en.wikipedia.org/wiki/Design_effect

    If the sample size is 1,000, then the effective sample size will be 500. It means that the variance of the weighted mean based on 1,000 samples will be the same as that of a simple mean based on 500 samples obtained using a simple random sample.

  8. Cohen's h - Wikipedia

    en.wikipedia.org/wiki/Cohen's_h

    Researchers have used Cohen's h as follows.. Describe the differences in proportions using the rule of thumb criteria set out by Cohen. [1] Namely, h = 0.2 is a "small" difference, h = 0.5 is a "medium" difference, and h = 0.8 is a "large" difference.

  9. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    Given an r-sample statistic, one can create an n-sample statistic by something similar to bootstrapping (taking the average of the statistic over all subsamples of size r). This procedure is known to have certain good properties and the result is a U-statistic. The sample mean and sample variance are of this form, for r = 1 and r = 2.