Search results
Results From The WOW.Com Content Network
A finitary argument is one which can be translated into a finite set of symbolic propositions starting from a finite [1] set of axioms. In other words, it is a proof (including all assumptions) that can be written on a large enough sheet of paper. By contrast, infinitary logic studies logics that allow infinitely long statements and proofs.
Towards the end of the 20th century John Penn Mayberry developed a system of finitary mathematics which he called "Euclidean Arithmetic". The most striking tenet of his system is a complete and rigorous rejection of the special foundational status normally accorded to iterative processes, including in particular the construction of the natural ...
In mathematics education, Finite Mathematics is a syllabus in college and university mathematics that is independent of calculus. ... or mathematical models.
In mathematics, a finitary relation over a sequence of sets X 1, ..., X n is a subset of the Cartesian product X 1 × ... × X n; that is, it is a set of n-tuples (x 1, ..., x n), each being a sequence of elements x i in the corresponding X i. [1] [2] [3] Typically, the relation describes a possible connection between the elements of an n-tuple.
In mathematics, Hilbert's program, formulated by German mathematician David Hilbert in the early 1920s, [1] was a proposed solution to the foundational crisis of mathematics, when early attempts to clarify the foundations of mathematics were found to suffer from paradoxes and inconsistencies.
The Game of Life, also known as Conway's Game of Life or simply Life, is a cellular automaton devised by the British mathematician John Horton Conway in 1970. [1] It is a zero-player game, [2] [3] meaning that its evolution is determined by its initial state, requiring no further input. One interacts with the Game of Life by creating an initial ...
Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power.
This page focuses on finitary first order model theory of infinite structures.. The relative emphasis placed on the class of models of a theory as opposed to the class of definable sets within a model fluctuated in the history of the subject, and the two directions are summarised by the pithy characterisations from 1973 and 1997 respectively: