Search results
Results From The WOW.Com Content Network
A finitary argument is one which can be translated into a finite set of symbolic propositions starting from a finite [1] set of axioms. In other words, it is a proof (including all assumptions) that can be written on a large enough sheet of paper. By contrast, infinitary logic studies logics that allow infinitely long statements and proofs.
Towards the end of the 20th century John Penn Mayberry developed a system of finitary mathematics which he called "Euclidean Arithmetic". The most striking tenet of his system is a complete and rigorous rejection of the special foundational status normally accorded to iterative processes, including in particular the construction of the natural ...
This page focuses on finitary first order model theory of infinite structures.. The relative emphasis placed on the class of models of a theory as opposed to the class of definable sets within a model fluctuated in the history of the subject, and the two directions are summarised by the pithy characterisations from 1973 and 1997 respectively:
In mathematics education, Finite Mathematics is a syllabus in college and university mathematics that is independent of calculus.
In model theory, the case of being algebraically closed and its prime field is especially important. While vector spaces are modular and affine spaces are "almost" modular (i.e. everywhere locally modular), algebraically closed fields are examples of the other extremity, not being even locally modular (i.e. none of the localizations is modular).
The method of forcing is employed in set theory, model theory, and recursion theory, as well as in the study of intuitionistic mathematics. The mathematical field of category theory uses many formal axiomatic methods, and includes the study of categorical logic , but category theory is not ordinarily considered a subfield of mathematical logic.
Finite model theory is a subarea of model theory. Model theory is the branch of logic which deals with the relation between a formal language (syntax) and its interpretations (semantics). Finite model theory is a restriction of model theory to interpretations on finite structures , which have a finite universe.
In universal algebra and in model theory, a structure consists of a set along with a collection of finitary operations and relations that are defined on it.. Universal algebra studies structures that generalize the algebraic structures such as groups, rings, fields and vector spaces.