Ad
related to: dynamic equivalence examples in real life situation multiplying fraction by fraction
Search results
Results From The WOW.Com Content Network
This last non-simple continued fraction (sequence A110185 in the OEIS), equivalent to = [;,,,,,...], has a quicker convergence rate compared to Euler's continued fraction formula [clarification needed] and is a special case of a general formula for the exponential function:
Another meaning for generalized continued fraction is a generalization to higher dimensions. For example, there is a close relationship between the simple continued fraction in canonical form for the irrational real number α, and the way lattice points in two dimensions lie to either side of the line y = αx. Generalizing this idea, one might ...
The real numbers whose continued fraction eventually repeats are precisely the quadratic irrationals. [4] For example, the repeating continued fraction [1;1,1,1,...] is the golden ratio, and the repeating continued fraction [1;2,2,2,...] is the square root of 2. In contrast, the decimal representations of quadratic irrationals are apparently ...
The process for subtracting fractions is, in essence, the same as that of adding them: find a common denominator, and change each fraction to an equivalent fraction with the chosen common denominator. The resulting fraction will have that denominator, and its numerator will be the result of subtracting the numerators of the original fractions.
If the discriminant is zero the fraction converges to the single root of multiplicity two. If the discriminant is positive the equation has two real roots, and the continued fraction converges to the larger (in absolute value) of these. The rate of convergence depends on the absolute value of the ratio between the two roots: the farther that ...
By considering the complete quotients of periodic continued fractions, Euler was able to prove that if x is a regular periodic continued fraction, then x is a quadratic irrational number. The proof is straightforward. From the fraction itself, one can construct the quadratic equation with integral coefficients that x must satisfy.
This page was last edited on 16 August 2023, at 13:10 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may ...
In abstract algebra, the integers, the rational numbers, the real numbers, and the complex numbers can be abstracted to more general algebraic structures, such as a commutative ring, which is a mathematical structure where addition, subtraction, and multiplication behave as they do in the more familiar number systems, but division may not be ...