When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. SIMPLEC algorithm - Wikipedia

    en.wikipedia.org/wiki/SIMPLEC_algorithm

    The steps involved are same as the SIMPLE algorithm and the algorithm is iterative in nature. p*, u*, v* are guessed Pressure, X-direction velocity and Y-direction velocity respectively, p', u', v' are the correction terms respectively and p, u, v are the correct fields respectively; Φ is the property for which we are solving and d terms are involved with the under relaxation factor.

  3. Reynolds-averaged Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Reynolds-averaged_Navier...

    The Reynolds-averaged Navier–Stokes equations (RANS equations) are time-averaged [a] equations of motion for fluid flow. The idea behind the equations is Reynolds decomposition , whereby an instantaneous quantity is decomposed into its time-averaged and fluctuating quantities, an idea first proposed by Osborne Reynolds . [ 1 ]

  4. TK Solver - Wikipedia

    en.wikipedia.org/wiki/TK_Solver

    TK Solver's core technologies are a declarative programming language, algebraic equation solver, [1] an iterative equation solver, and a structured, object-based interface, using a command structure. [ 1 ] [ 7 ] The interface comprises nine classes of objects that can be shared between and merged into other TK files:

  5. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  6. Verlet integration - Wikipedia

    en.wikipedia.org/wiki/Verlet_integration

    A related, and more commonly used algorithm is the velocity Verlet algorithm, [5] similar to the leapfrog method, except that the velocity and position are calculated at the same value of the time variable (leapfrog does not, as the name suggests). This uses a similar approach, but explicitly incorporates velocity, solving the problem of the ...

  7. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)

  8. Parametric equation - Wikipedia

    en.wikipedia.org/wiki/Parametric_equation

    In mathematics, a parametric equation expresses several quantities, such as the coordinates of a point, as functions of one or several variables called parameters. [ 1 ] In the case of a single parameter, parametric equations are commonly used to express the trajectory of a moving point, in which case, the parameter is often, but not ...

  9. Lattice Boltzmann methods - Wikipedia

    en.wikipedia.org/wiki/Lattice_Boltzmann_methods

    A different interpretation of the lattice Boltzmann equation is that of a discrete-velocity Boltzmann equation. The numerical methods of solution of the system of partial differential equations then give rise to a discrete map, which can be interpreted as the propagation and collision of fictitious particles.