When.com Web Search

  1. Ad

    related to: least primitive root arithmetic progression practice pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which g k ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n.

  3. Linnik's theorem - Wikipedia

    en.wikipedia.org/wiki/Linnik's_theorem

    Linnik's theorem in analytic number theory answers a natural question after Dirichlet's theorem on arithmetic progressions.It asserts that there exist positive c and L such that, if we denote p(a,d) the least prime in the arithmetic progression

  4. Root of unity modulo n - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity_modulo_n

    A simple way to find such an n is to check for primitive kth roots with respect to the moduli in the arithmetic progression +, +, +, … All of these moduli are coprime to k and thus k is a unit. According to Dirichlet's theorem on arithmetic progressions there are infinitely many primes in the progression, and for a prime p {\displaystyle p ...

  5. Problems involving arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Problems_involving...

    The sequence of primes numbers contains arithmetic progressions of any length. This result was proven by Ben Green and Terence Tao in 2004 and is now known as the Green–Tao theorem. [3] See also Dirichlet's theorem on arithmetic progressions. As of 2020, the longest known arithmetic progression of primes has length 27: [4]

  6. Safe and Sophie Germain primes - Wikipedia

    en.wikipedia.org/wiki/Safe_and_Sophie_Germain_primes

    q-3, q-4, q-9, and, for q > 11, q-12 are primitive roots If p is a Sophie Germain prime greater than 3, then p must be congruent to 2 mod 3. For, if not, it would be congruent to 1 mod 3 and 2 p + 1 would be congruent to 3 mod 3, impossible for a prime number. [ 16 ]

  7. List of unsolved problems in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Artin's conjecture on primitive roots that if an integer is neither a perfect square nor , then it is a primitive root modulo infinitely many prime numbers Brocard's conjecture : there are always at least 4 {\displaystyle 4} prime numbers between consecutive squares of prime numbers, aside from 2 2 {\displaystyle 2^{2}} and 3 2 {\displaystyle 3 ...

  8. Primes in arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Primes_in_arithmetic...

    In number theory, primes in arithmetic progression are any sequence of at least three prime numbers that are consecutive terms in an arithmetic progression. An example is the sequence of primes (3, 7, 11), which is given by a n = 3 + 4 n {\displaystyle a_{n}=3+4n} for 0 ≤ n ≤ 2 {\displaystyle 0\leq n\leq 2} .

  9. Canon arithmeticus - Wikipedia

    en.wikipedia.org/wiki/Canon_arithmeticus

    The Canon arithmeticus is a set of mathematical tables of indices and powers with respect to primitive roots for prime powers less than 1000, originally published by Carl Gustav Jacob Jacobi . The tables were at one time used for arithmetical calculations modulo prime powers, though like many mathematical tables, they have now been replaced by ...