When.com Web Search

  1. Ads

    related to: multilayer perceptron solved example math equations problems

Search results

  1. Results From The WOW.Com Content Network
  2. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    A perceptron traditionally used a Heaviside step function as its nonlinear activation function. However, the backpropagation algorithm requires that modern MLPs use continuous activation functions such as sigmoid or ReLU. [8] Multilayer perceptrons form the basis of deep learning, [9] and are applicable across a vast set of diverse domains. [10]

  3. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    The perceptron algorithm is also termed the single-layer perceptron, to distinguish it from a multilayer perceptron, which is a misnomer for a more complicated neural network. As a linear classifier, the single-layer perceptron is the simplest feedforward neural network .

  4. Backpropagation - Wikipedia

    en.wikipedia.org/wiki/Backpropagation

    The Hessian and quasi-Hessian optimizers solve only local minimum convergence problem, and the backpropagation works longer. These problems caused researchers to develop hybrid [6] and fractional [7] optimization algorithms. Backpropagation had multiple discoveries and partial discoveries, with a tangled history and terminology.

  5. Mathematics of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_artificial...

    An artificial neural network (ANN) combines biological principles with advanced statistics to solve problems in domains such as pattern recognition and game-play. ANNs adopt the basic model of neuron analogues connected to each other in a variety of ways.

  6. Feedforward neural network - Wikipedia

    en.wikipedia.org/wiki/Feedforward_neural_network

    A multilayer perceptron (MLP) is a misnomer for a modern feedforward artificial neural network, consisting of fully connected neurons (hence the synonym sometimes used of fully connected network (FCN)), often with a nonlinear kind of activation function, organized in at least three layers, notable for being able to distinguish data that is not ...

  7. List of unsolved problems in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.

  8. Universal approximation theorem - Wikipedia

    en.wikipedia.org/wiki/Universal_approximation...

    The problem with polynomials may be removed by allowing the outputs of the hidden layers to be multiplied together (the "pi-sigma networks"), yielding the generalization: [41] Universal approximation theorem for pi-sigma networks — With any nonconstant activation function, a one-hidden-layer pi-sigma network is a universal approximator.

  9. Radial basis function network - Wikipedia

    en.wikipedia.org/wiki/Radial_basis_function_network

    This equation represents the underlying geometry of the chaotic time series generated by the logistic map. Generation of the time series from this equation is the forward problem. The examples here illustrate the inverse problem; identification of the underlying dynamics, or fundamental equation, of the logistic map from exemplars of the time ...