Search results
Results From The WOW.Com Content Network
In the context of Bayesian statistics, the posterior probability distribution usually describes the epistemic uncertainty about statistical parameters conditional on a collection of observed data. From a given posterior distribution, various point and interval estimates can be derived, such as the maximum a posteriori (MAP) or the highest ...
In Bayesian statistics, the posterior predictive distribution is the distribution of possible unobserved values conditional on the observed values. [1] [2]Given a set of N i.i.d. observations = {, …,}, a new value ~ will be drawn from a distribution that depends on a parameter , where is the parameter space.
But since the posterior is a gamma distribution, the MLE of the marginal turns out to be just the mean of the posterior, which is the point estimate we need. Recalling that the mean μ {\displaystyle \mu } of a gamma distribution G ( α ′ , β ′ ) {\displaystyle G(\alpha ',\beta ')} is simply α ′ β ′ {\displaystyle \alpha '\beta ...
For example, in an experiment that determines the distribution of possible values of the parameter , if the probability that lies between 35 and 45 is =, then is a 95% credible interval. Credible intervals are typically used to characterize posterior probability distributions or predictive probability distributions. [ 1 ]
An informative prior expresses specific, definite information about a variable. An example is a prior distribution for the temperature at noon tomorrow. A reasonable approach is to make the prior a normal distribution with expected value equal to today's noontime temperature, with variance equal to the day-to-day variance of atmospheric temperature, or a distribution of the temperature for ...
This means that if a data point has either a categorical or multinomial distribution, and the prior distribution of the distribution's parameter (the vector of probabilities that generates the data point) is distributed as a Dirichlet, then the posterior distribution of the parameter is also a Dirichlet. Intuitively, in such a case, starting ...
Gibbs sampling is named after the physicist Josiah Willard Gibbs, in reference to an analogy between the sampling algorithm and statistical physics.The algorithm was described by brothers Stuart and Donald Geman in 1984, some eight decades after the death of Gibbs, [1] and became popularized in the statistics community for calculating marginal probability distribution, especially the posterior ...
The bootstrap distribution of the sample-median has only a small number of values. The smoothed bootstrap distribution has a richer support. However, note that whether the smoothed or standard bootstrap procedure is favorable is case-by-case and is shown to depend on both the underlying distribution function and on the quantity being estimated ...