Search results
Results From The WOW.Com Content Network
A container, usually a two- or three-dimensional convex region, possibly of infinite size. Multiple containers may be given depending on the problem. A set of objects, some or all of which must be packed into one or more containers. The set may contain different objects with their sizes specified, or a single object of a fixed dimension that ...
Slice semantics potentially differ per object; new semantics can be introduced when operator overloading the indexing operator. With Python standard lists (which are dynamic arrays), every slice is a copy. Slices of NumPy arrays, by contrast, are views onto the same underlying buffer.
Chan's algorithm is used for dimensions 2 and 3, and Quickhull is used for computation of the convex hull in higher dimensions. [9] For a finite set of points, the convex hull is a convex polyhedron in three dimensions, or in general a convex polytope for any number of dimensions, whose vertices are some of the points in the input set. Its ...
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
There is an exponential increase in volume associated with adding extra dimensions to a mathematical space.For example, 10 2 = 100 evenly spaced sample points suffice to sample a unit interval (try to visualize a "1-dimensional" cube) with no more than 10 −2 = 0.01 distance between points; an equivalent sampling of a 10-dimensional unit hypercube with a lattice that has a spacing of 10 −2 ...
If the group of operations on a single polytope of an n-dimensional puzzle is defined as any rotation of an (n – 1)-dimensional polytope in (n – 1)-dimensional space then the size of the group, for the 5-cube is rotations of a 4-polytope in 4-space = 8×6×4 = 192, for the 4-cube is rotations of a 3-polytope (cube) in 3-space = 6×4 = 24,
In computer science, binary space partitioning (BSP) is a method for space partitioning which recursively subdivides a Euclidean space into two convex sets by using hyperplanes as partitions. This process of subdividing gives rise to a representation of objects within the space in the form of a tree data structure known as a BSP tree .
Dimensionality reduction, or dimension reduction, is the transformation of data from a high-dimensional space into a low-dimensional space so that the low-dimensional representation retains some meaningful properties of the original data, ideally close to its intrinsic dimension.