Ads
related to: identify functions graphs 8th grade- Printable Workbooks
Download & print 300+ workbooks
written & reviewed by teachers.
- Lesson Plans
Engage your students with our
detailed lesson plans for K-8.
- Printable Workbooks
teacherspayteachers.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function. Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise.
Graph of a linear function Graph of a polynomial function, here a quadratic function. Graph of two trigonometric functions: sine and cosine. A real function is a real-valued function of a real variable, that is, a function whose codomain is the field of real numbers and whose domain is a set of real numbers that contains an interval.
p-adic function: a function whose domain is p-adic. Linear function; also affine function. Convex function: line segment between any two points on the graph lies above the graph. Also concave function. Arithmetic function: A function from the positive integers into the complex numbers. Analytic function: Can be defined locally by a convergent ...
Equivalently, a function is convex if its epigraph (the set of points on or above the graph of the function) is a convex set. In simple terms, a convex function graph is shaped like a cup ∪ {\displaystyle \cup } (or a straight line like a linear function), while a concave function 's graph is shaped like a cap ∩ {\displaystyle \cap } .
Epigraph of a function A function (in black) is convex if and only if the region above its graph (in green) is a convex set.This region is the function's epigraph. In mathematics, the epigraph or supergraph [1] of a function: [,] valued in the extended real numbers [,] = {} is the set = {(,) : ()} consisting of all points in the Cartesian product lying on or above the function's graph. [2]