Search results
Results From The WOW.Com Content Network
Event (probability theory) – In statistics and probability theory, set of outcomes to which a probability is assigned; Sample space – Set of all possible outcomes or results of a statistical trial or experiment; Probability distribution – Mathematical function for the probability a given outcome occurs in an experiment
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
A simple example is the tossing of a fair (unbiased) coin. Since the coin is fair, the two outcomes ("heads" and "tails") are both equally probable; the probability of "heads" equals the probability of "tails"; and since no other outcomes are possible, the probability of either "heads" or "tails" is 1/2 (which could also be written as 0.5 or 50%).
When probability is expressed as a number between 0 and 1, the relationships between probability p and odds are as follows. Note that if probability is to be expressed as a percentage these probability values should be multiplied by 100%. " X in Y" means that the probability is p = X / Y. " X to Y in favor" means that the probability is p = X ...
A subset of the sample space of a procedure or experiment (i.e. a possible outcome) to which a probability can be assigned. For example, on rolling a die, "getting a three" is an event (with a probability of 1 ⁄ 6 if the die is fair), as is "getting a five or a six" (with a probability of 1 ⁄ 3).
In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of possible outcomes for an experiment. [1] [2] It is a mathematical description of a random phenomenon in terms of its sample space and the probabilities of events (subsets of the sample space). [3]
The certainty that is adopted can be described in terms of a numerical measure, and this number, between 0 and 1 (where 0 indicates impossibility and 1 indicates certainty) is called the probability. Probability theory is used extensively in statistics , mathematics , science and philosophy to draw conclusions about the likelihood of potential ...
An increasing similarity of outcomes to what a purely deterministic function would produce; An increasing preference towards a certain outcome; An increasing "aversion" against straying far away from a certain outcome; That the probability distribution describing the next outcome may grow increasingly similar to a certain distribution