Search results
Results From The WOW.Com Content Network
Dielectric mirrors are also used to produce ultra-high reflectivity mirrors: values of 99.999% or better over a narrow range of wavelengths can be produced using special techniques. Alternatively, they can be made to reflect a broad spectrum of light, such as the entire visible range or the spectrum of the Ti-sapphire laser.
Time-resolved simulation of a pulse reflecting from a Bragg mirror. A distributed Bragg reflector (DBR) is a reflector used in waveguides, such as optical fibers.It is a structure formed from multiple layers of alternating materials with different refractive index, or by periodic variation of some characteristic (such as height) of a dielectric waveguide, resulting in periodic variation in the ...
A fiber Bragg grating (FBG) is a type of distributed Bragg reflector constructed in a short segment of optical fiber that reflects particular wavelengths of light and transmits all others. This is achieved by creating a periodic variation in the refractive index of the fiber core, which generates a wavelength-specific dielectric mirror.
A dielectric permittivity spectrum over a wide range of frequencies. The real and imaginary parts of permittivity are shown, and various processes are depicted: ionic and dipolar relaxation, and atomic and electronic resonances at higher energies.
A chirped mirror is a dielectric mirror with chirped spaces—spaces of varying depth designed to reflect varying wavelengths of lights—between the dielectric layers (stack). Chirped mirrors are used in applications like lasers to reflect a wider range of light wavelengths than ordinary dielectric mirrors, or to compensate for the dispersion ...
Diffuse reflectance spectroscopy, or diffuse reflection spectroscopy, is a subset of absorption spectroscopy.It is sometimes called remission spectroscopy.Remission is the reflection or back-scattering of light by a material, while transmission is the passage of light through a material.
A new type of dielectric "perfect mirror" was developed in 1998 by researchers at MIT. [2] [3] These unusual mirrors are very efficient reflectors over a broad range of angles and wavelengths, and are insensitive to polarization. A version of the perfect mirror that was developed at MIT for military use is used by OmniGuide in laser surgery. [4]
Inside a lossless dielectric (the usual case), E and H are in phase, and at right angles to each other and to the wave vector k; so, for s polarization, using the z and xy components of E and H respectively (or for p polarization, using the xy and −z components of E and H), the irradiance in the direction of k is given simply by EH/2, which ...