Search results
Results From The WOW.Com Content Network
The sum of n geometric random variables with probability of success p is a negative binomial random variable with parameters n and p. The sum of n exponential (β) random variables is a gamma (n, β) random variable. Since n is an integer, the gamma distribution is also a Erlang distribution.
A geometric progression, also known as a geometric sequence, is a mathematical sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed number called the common ratio. For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3.
The exponential distribution is the continuous analogue of the geometric distribution. Applying the floor function to the exponential distribution with parameter λ {\displaystyle \lambda } creates a geometric distribution with parameter p = 1 − e − λ {\displaystyle p=1-e^{-\lambda }} defined over N 0 {\displaystyle \mathbb {N} _{0}} .
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...
Often the independent variable is time. Described as a function, a quantity undergoing exponential growth is an exponential function of time, that is, the variable representing time is the exponent (in contrast to other types of growth, such as quadratic growth). Exponential growth is the inverse of logarithmic growth.
1.2 Geometric series, exponential function and sine. ... the power series of the sum or difference of the functions can be obtained by termwise addition and subtraction.
Any sequence that is asymptotically equivalent to a convergent geometric sequence may be either be said to "converge geometrically" or "converge exponentially" with respect to the absolute difference from its limit, or it may be said to "converge linearly" relative to a logarithm of the absolute difference such as the "number of decimals of ...
The only continuous random variable that is memoryless is the exponential random variable. It models random processes like time between consecutive events. [8] The memorylessness property asserts that the amount of time since the previous event has no effect on the future time until the next event occurs.