When.com Web Search

  1. Ad

    related to: difference between critical and inflection points in calculus problems

Search results

  1. Results From The WOW.Com Content Network
  2. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    A critical point of a function of a single real variable, f (x), is a value x 0 in the domain of f where f is not differentiable or its derivative is 0 (i.e. ′ =). [2] A critical value is the image under f of a critical point.

  3. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    However, not all critical points are extrema. One can often distinguish whether a critical point is a local maximum, a local minimum, or neither by using the first derivative test, second derivative test, or higher-order derivative test, given sufficient differentiability. [5]

  4. Inflection point - Wikipedia

    en.wikipedia.org/wiki/Inflection_point

    A rising point of inflection is a point where the derivative is positive on both sides of the point; in other words, it is an inflection point near which the function is increasing. For a smooth curve given by parametric equations , a point is an inflection point if its signed curvature changes from plus to minus or from minus to plus, i.e ...

  5. Derivative test - Wikipedia

    en.wikipedia.org/wiki/Derivative_test

    After establishing the critical points of a function, the second-derivative test uses the value of the second derivative at those points to determine whether such points are a local maximum or a local minimum. [1] If the function f is twice-differentiable at a critical point x (i.e. a point where f ′ (x) = 0), then:

  6. Stationary point - Wikipedia

    en.wikipedia.org/wiki/Stationary_point

    A more straightforward way of determining the nature of a stationary point is by examining the function values between the stationary points (if the function is defined and continuous between them). A simple example of a point of inflection is the function f(x) = x 3. There is a clear change of concavity about the point x = 0, and we can prove ...

  7. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    In higher dimensions, a critical point of a scalar valued function is a point at which the gradient is zero. The second derivative test can still be used to analyse critical points by considering the eigenvalues of the Hessian matrix of second partial derivatives of the function at the critical point. If all of the eigenvalues are positive ...

  8. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    [56]: 37 In analytic geometry, the study of graphs of functions, calculus is used to find high points and low points (maxima and minima), slope, concavity and inflection points. Calculus is also used to find approximate solutions to equations; in practice, it is the standard way to solve differential equations and do root finding in most ...

  9. Saddle point - Wikipedia

    en.wikipedia.org/wiki/Saddle_point

    A saddle point (in red) on the graph of z = x 2 − y 2 (hyperbolic paraboloid). In mathematics, a saddle point or minimax point [1] is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a critical point), but which is not a local extremum of the function. [2]