Search results
Results From The WOW.Com Content Network
A Riemann sum of over [,] with ... A generalized midpoint rule formula, ... if the maximum size of a subinterval shrinks to zero, this implies the number of ...
The trapezoidal rule may be viewed as the result obtained by averaging the left and right Riemann sums, and is sometimes defined this way. The integral can be even better approximated by partitioning the integration interval, applying the trapezoidal rule to each subinterval, and summing the results. In practice, this "chained" (or "composite ...
One popular restriction is the use of "left-hand" and "right-hand" Riemann sums. In a left-hand Riemann sum, t i = x i for all i, and in a right-hand Riemann sum, t i = x i + 1 for all i. Alone this restriction does not impose a problem: we can refine any partition in a way that makes it a left-hand or right-hand sum by subdividing it at each t i.
A partition of an interval being used in a Riemann sum. The partition itself is shown in grey at the bottom, with the norm of the partition indicated in red. In mathematics, a partition of an interval [a, b] on the real line is a finite sequence x 0, x 1, x 2, …, x n of real numbers such that a = x 0 < x 1 < x 2 < … < x n = b.
The Weyl tensor has the same basic symmetries as the Riemann tensor, but its 'analogue' of the Ricci tensor is zero: = = = = The Ricci tensor, the Einstein tensor, and the traceless Ricci tensor are symmetric 2-tensors:
The Riemann–Stieltjes integral admits integration by parts in the form () = () () ()and the existence of either integral implies the existence of the other. [2]On the other hand, a classical result [3] shows that the integral is well-defined if f is α-Hölder continuous and g is β-Hölder continuous with α + β > 1 .
Riemann's original use of the explicit formula was to give an exact formula for the number of primes less than a given number. To do this, take F(log(y)) to be y 1/2 /log(y) for 0 ≤ y ≤ x and 0 elsewhere. Then the main term of the sum on the right is the number of primes less than x.
Suppose α is irrational and denote our sequence by a j = jα (where j starts from 0, to simplify the formula later). Let ℓ ≠ 0 be an integer. Since α is irrational, ℓα can never be an integer, so can never be 1. Using the formula for the sum of a finite geometric series,