Search results
Results From The WOW.Com Content Network
This equation holds for a body or system, such as one or more particles, with total energy E, invariant mass m 0, and momentum of magnitude p; the constant c is the speed of light. It assumes the special relativity case of flat spacetime [1] [2] [3] and that the particles are free.
The speed of light is the upper limit for the speeds of objects with positive rest mass, and individual photons cannot travel faster than the speed of light. [39] This is experimentally established in many tests of relativistic energy and momentum .
The expression for the four-momentum depends on how the coordinates are expressed. Time may be given in its normal units or multiplied by the speed of light so that all the components of the four-vector have dimensions of length. If the latter scaling is used, an interval of proper time, τ, defined by [54]
Its initial value is 1 (when v = 0); and as velocity approaches the speed of light (v → c) γ increases without bound (γ → ∞). α (Lorentz factor inverse) as a function of velocity—a circular arc. In the table below, the left-hand column shows speeds as different fractions of the speed of light (i.e. in units of c). The middle column ...
If a body's speed is a significant fraction of the speed of light, it is necessary to use relativistic mechanics to calculate its kinetic energy. In relativity, the total energy is given by the energy-momentum relation :
The dimension of momentum is T −1 L M. The dimension of energy is T −2 L 2 M. Dividing a unit of energy (such as eV) by a fundamental constant (such as the speed of light) that has the dimension of velocity (T −1 L) facilitates the required conversion for using a unit of energy to quantify momentum.
The magnitude, denoted by S, divided by the speed of light is the density of the linear momentum per unit area (pressure) of the electromagnetic field. So, dimensionally, the Poynting vector is S = power / area = rate of doing work / area = ΔF / Δt Δx / area , which is the speed of light, c = Δx / Δt, times ...
Mass–energy equivalence states that all objects having mass, or massive objects, have a corresponding intrinsic energy, even when they are stationary.In the rest frame of an object, where by definition it is motionless and so has no momentum, the mass and energy are equal or they differ only by a constant factor, the speed of light squared (c 2).