Search results
Results From The WOW.Com Content Network
The rational root theorem is a special case (for a single linear factor) of Gauss's lemma on the factorization of polynomials. The integral root theorem is the special case of the rational root theorem when the leading coefficient is a n = 1.
If =, then it says a rational root of a monic polynomial over integers is an integer (cf. the rational root theorem). To see the statement, let a / b {\displaystyle a/b} be a root of f {\displaystyle f} in F {\displaystyle F} and assume a , b {\displaystyle a,b} are relatively prime .
Abel–Ruffini theorem; Bring radical; Binomial theorem; Blossom (functional) Root of a function; nth root (radical) Surd; Square root; Methods of computing square roots; Cube root; Root of unity; Constructible number; Complex conjugate root theorem; Algebraic element; Horner scheme; Rational root theorem; Gauss's lemma (polynomial) Irreducible ...
Theorem — The number of strictly positive roots (counting multiplicity) of is equal to the number of sign changes in the coefficients of , minus a nonnegative even number. If b 0 > 0 {\displaystyle b_{0}>0} , then we can divide the polynomial by x b 0 {\displaystyle x^{b_{0}}} , which would not change its number of strictly positive roots.
By the rational root theorem, this has no rational zeroes. Neither does it have linear factors modulo 2 or 3. The Galois group of f(x) modulo 2 is cyclic of order 6, because f(x) modulo 2 factors into polynomials of orders 2 and 3, (x 2 + x + 1)(x 3 + x 2 + 1). f(x) modulo 3 has no linear or quadratic factor, and hence is irreducible. Thus its ...
The rational root theorem (or integer root theorem) may be used to show that any square root of any natural number that is not a perfect square is irrational. For other proofs that the square root of any non-square natural number is irrational, see Quadratic irrational number or Infinite descent.
The polynomial P(x) has a rational root (this can be determined using the rational root theorem). The resolvent cubic R 3 (y) has a root of the form α 2, for some non-null rational number α (again, this can be determined using the rational root theorem). The number a 2 2 − 4a 0 is the square of a rational number and a 1 = 0. Indeed:
This results from the rational root theorem, which asserts that, if the rational number is a root of a polynomial with integer coefficients, then q is a divisor of the leading coefficient; so, if the polynomial is monic, then =, and the number is an integer.