Search results
Results From The WOW.Com Content Network
The narrow vertical conduit, postulated to connect the plume head to the core-mantle boundary, is viewed as providing a continuous supply of magma to a hotspot. As the overlying tectonic plate moves over this hotspot, the eruption of magma from the fixed plume onto the surface is expected to form a chain of volcanoes that parallels plate motion ...
Magma that is extruded as lava is extremely dry, but magma at depth and under great pressure can contain a dissolved water content in excess of 10%. Water is somewhat less soluble in low-silica magma than high-silica magma, so that at 1,100 °C and 0.5 GPa , a basaltic magma can dissolve 8% H 2 O while a granite pegmatite magma can dissolve 11% ...
Magma emplacement can take place at any depth above the source rock. [4] Magma emplacement is primarily controlled by the internal forces of magma including buoyancy and magma pressure. [2] Magma pressure changes with depth as vertical stress is a function of the depth. [20] Another parameter of magma emplacement is the rate of magma supply. [2]
These rhyolites can form violent eruptions. [10] [11] For example, the Yellowstone Caldera was formed by some of the most powerful volcanic explosions in geologic history. However, when the rhyolite is completely erupted, it may be followed by eruptions of basaltic magma rising through the same lithospheric fissures (cracks in the lithosphere).
The presence of water can greatly alter the characteristics of a volcanic eruption and the explosions of underwater volcanoes in comparison to those on land. For instance, water causes magma to cool and solidify much more quickly than in a terrestrial eruption, often turning it into volcanic glass. The shapes and textures of lava formed by ...
The change of rock composition most responsible for the creation of magma is the addition of water. Water lowers the solidus temperature of rocks at a given pressure. For example, at a depth of about 100 kilometres, peridotite begins to melt near 800 °C in the presence of excess water, but near or above about 1,500 °C in the absence of water ...
Magma exists in three main forms that vary in composition. [3] When magma crystallizes within the crust, it forms an extrusive igneous rock. Dependent on the composition of the magma, it may form either rhyolite, andesite, or basalt. [3] Volatiles, particularly water and carbon dioxide, significantly impact the behavior of each form of magma ...
Plumes are postulated to rise through the mantle and begin to partially melt on reaching shallow depths in the asthenosphere by decompression melting. This would create large volumes of magma. The plume hypothesis postulates that this melt rises to the surface and erupts to form "hot spots".