Search results
Results From The WOW.Com Content Network
A curve with a triple point at the origin: x(t) = sin(2t) + cos(t), y(t) = sin(t) + cos(2t) In general, if all the terms of degree less than k are 0, and at least one term of degree k is not 0 in f, then curve is said to have a multiple point of order k or a k-ple point.
Point a is an ordinary point when functions p 1 (x) and p 0 (x) are analytic at x = a. Point a is a regular singular point if p 1 (x) has a pole up to order 1 at x = a and p 0 has a pole of order up to 2 at x = a. Otherwise point a is an irregular singular point.
Consider a smooth real-valued function of two variables, say f (x, y) where x and y are real numbers.So f is a function from the plane to the line. The space of all such smooth functions is acted upon by the group of diffeomorphisms of the plane and the diffeomorphisms of the line, i.e. diffeomorphic changes of coordinate in both the source and the target.
This means that the subset of points without a second derivative has measure zero in the curve. However, in other senses, the set of points with a second derivative can be small. In particular, for the graphs of generic non-smooth convex functions, it is a meager set, that is, a countable union of nowhere dense sets. [42]
Points of V that are not singular are called non-singular or regular. It is always true that almost all points are non-singular, in the sense that the non-singular points form a set that is both open and dense in the variety (for the Zariski topology, as well as for the usual topology, in the case of varieties defined over the complex numbers). [1]
The singular set of x 2 = y 2 z 2 is the pair of lines given by the y and z axes. The only reasonable varieties to blow up are the origin, one of these two axes, or the whole singular set (both axes). However the whole singular set cannot be used since it is not smooth, and choosing one of the two axes breaks the symmetry between them so is not ...
One could define the x-axis as a tangent at this point, but this definition can not be the same as the definition at other points. In fact, in this case, the x-axis is a "double tangent." For affine and projective varieties, the singularities are the points where the Jacobian matrix has a rank which is lower than at other points of the variety.
Singular point of a curve, where the curve is not given by a smooth embedding of a parameter; Singular point of an algebraic variety, a point where an algebraic variety is not locally flat; Rational singularity