Search results
Results From The WOW.Com Content Network
A curve with a triple point at the origin: x(t) = sin(2t) + cos(t), y(t) = sin(t) + cos(2t) In general, if all the terms of degree less than k are 0, and at least one term of degree k is not 0 in f, then curve is said to have a multiple point of order k or a k-ple point.
Point a is an ordinary point when functions p 1 (x) and p 0 (x) are analytic at x = a. Point a is a regular singular point if p 1 (x) has a pole up to order 1 at x = a and p 0 has a pole of order up to 2 at x = a. Otherwise point a is an irregular singular point.
Singular point of a curve, where the curve is not given by a smooth embedding of a parameter; Singular point of an algebraic variety, a point where an algebraic variety is not locally flat; Rational singularity
Points of V that are not singular are called non-singular or regular. It is always true that almost all points are non-singular, in the sense that the non-singular points form a set that is both open and dense in the variety (for the Zariski topology, as well as for the usual topology, in the case of varieties defined over the complex numbers). [1]
The pinch point (in this case the origin) is a limit of normal crossings singular points (the -axis in this case). These singular points are intimately related in the sense that in order to resolve the pinch point singularity one must blow-up the whole v {\displaystyle v} -axis and not only the pinch point.
The points on the floor where it does this are one kind of singularity, the double point: one bit of the floor corresponds to more than one bit of string. Perhaps the string will also touch itself without crossing, like an underlined "U". This is another kind of singularity.
There are several ways that inflammation can make your muscles lose their strength. Research has shown that the presence of certain inflammatory blood markers is associated with muscle breakdown ...
One could define the x-axis as a tangent at this point, but this definition can not be the same as the definition at other points. In fact, in this case, the x -axis is a "double tangent." For affine and projective varieties , the singularities are the points where the Jacobian matrix has a rank which is lower than at other points of the variety.