Search results
Results From The WOW.Com Content Network
Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque [1] [2].Torsion could be defined as strain [3] [4] or angular deformation [5], and is measured by the angle a chosen section is rotated from its equilibrium position [6].
The inverse is true as well: if the loading on a bone decreases, the bone will become less dense and weaker due to the lack of the stimulus required for continued remodeling. [5] This reduction in bone density ( osteopenia ) is known as stress shielding and can occur as a result of a hip replacement (or other prosthesis).
Eq. 2 is the cumulative Weibull distribution with scale parameter and shape parameter ; = [^ ()] = constant factor depending on the structure geometry, = structure volume; = relative (size-independent) coordinate vectors, ^ = dimensionless stress field (dependent on geometry), scaled so that the maximum stress be 1; = number of spatial ...
This is not true since the actual area will decrease while deforming due to elastic and plastic deformation. The curve based on the original cross-section and gauge length is called the engineering stress–strain curve, while the curve based on the instantaneous cross-section area and length is called the true stress–strain curve. Unless ...
This type of stress may be called (simple) normal stress or uniaxial stress; specifically, (uniaxial, simple, etc.) tensile stress. [13] If the load is compression on the bar, rather than stretching it, the analysis is the same except that the force F and the stress σ {\displaystyle \sigma } change sign, and the stress is called compressive ...
Calculation of the steam turbine shaft radius for a turboset: Assumptions: Power carried by the shaft is 1000 MW; this is typical for a large nuclear power plant. Yield stress of the steel used to make the shaft (τ yield) is: 250 × 10 6 N/m 2. Electricity has a frequency of 50 Hz; this is the typical frequency in Europe.
The elastic deformation of bone is measured in μStrain. [2] [3] 1000μStrain = 0.1% change of length of the bone.Strain E at length l and change of length Δl: =; It has to be considered that bone strength is highly dependent on geometry and direction of the acting forces in relation to this geometry.
Stress analysis can be performed experimentally by applying forces to a test element or structure and then determining the resulting stress using sensors. In this case the process would more properly be known as testing (destructive or non-destructive). Experimental methods may be used in cases where mathematical approaches are cumbersome or ...