When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Void coefficient - Wikipedia

    en.wikipedia.org/wiki/Void_coefficient

    Boiling water reactors generally have negative void coefficients, and in normal operation the negative void coefficient allows reactor power to be adjusted by changing the rate of water flow through the core. The negative void coefficient can cause an unplanned reactor power increase in events (such as sudden closure of a streamline valve ...

  3. Loss-of-coolant accident - Wikipedia

    en.wikipedia.org/wiki/Loss-of-coolant_accident

    This is measured by the coolant void coefficient. Most modern nuclear power plants have a negative void coefficient, indicating that as water turns to steam, power instantly decreases. Two exceptions are the Soviet RBMK and the Canadian CANDU. Boiling water reactors, on the other hand, are designed to have steam voids inside the reactor vessel.

  4. VVER - Wikipedia

    en.wikipedia.org/wiki/VVER

    The water-water energetic reactor ... and by nature of its design has a negative void coefficient like all ... Split in two plants, V-1 and V-2 with two reactors each ...

  5. Boiling water reactor safety systems - Wikipedia

    en.wikipedia.org/wiki/Boiling_water_reactor...

    The Reactor Protection System (RPS) is a system, computerized in later BWR models, that is designed to automatically, rapidly, and completely shut down and make safe the Nuclear Steam Supply System (NSSS – the reactor pressure vessel, pumps, and water/steam piping within the containment) if some event occurs that could result in the reactor entering an unsafe operating condition.

  6. Investigations into the Chernobyl disaster - Wikipedia

    en.wikipedia.org/wiki/Investigations_into_the...

    The reactor had a dangerously large positive void coefficient of reactivity. The void coefficient is a measurement of how a reactor responds to increased steam formation in the water coolant. Most other reactor designs have a negative coefficient, i.e. the nuclear reaction rate slows when steam bubbles form in the coolant, since as the steam ...

  7. Ergun equation - Wikipedia

    en.wikipedia.org/wiki/Ergun_equation

    To calculate the pressure drop in a given reactor, the following equation may be deduced: = + | |. This arrangement of the Ergun equation makes clear its close relationship to the simpler Kozeny-Carman equation, which describes laminar flow of fluids across packed beds via the first term on the right hand side.

  8. Integral fast reactor - Wikipedia

    en.wikipedia.org/wiki/Integral_fast_reactor

    LWRs have less effect from thermal expansion of fuel (since much of the core is the neutron moderator) but have strong negative feedback from Doppler broadening (which acts on thermal and epithermal neutrons, not fast neutrons) and negative void coefficient from boiling of the water moderator/coolant; the less dense steam returns fewer and less ...

  9. Nuclear chain reaction - Wikipedia

    en.wikipedia.org/wiki/Nuclear_chain_reaction

    For example, power plants licensed in the United States require a negative void coefficient of reactivity (this means that if coolant is removed from the reactor core, the nuclear reaction will tend to shut down, not increase). This eliminates the possibility of the type of accident that occurred at Chernobyl (which was caused by a positive ...