When.com Web Search

  1. Ad

    related to: tensile stress calculation examples with answers free

Search results

  1. Results From The WOW.Com Content Network
  2. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    Tensile strength or ultimate tensile strength is a limit state of tensile stress that leads to tensile failure in the manner of ductile failure (yield as the first stage of that failure, some hardening in the second stage and breakage after a possible "neck" formation) or brittle failure (sudden breaking in two or more pieces at a low-stress ...

  3. Stress (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Stress_(mechanics)

    This type of stress may be called (simple) normal stress or uniaxial stress; specifically, (uniaxial, simple, etc.) tensile stress. [13] If the load is compression on the bar, rather than stretching it, the analysis is the same except that the force F and the stress σ {\displaystyle \sigma } change sign, and the stress is called compressive ...

  4. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_curve

    [1]: 58 For example, low-carbon steel generally exhibits a very linear stress–strain relationship up to a well-defined yield point. The linear portion of the curve is the elastic region, and the slope of this region is the modulus of elasticity or Young's modulus. Plastic flow initiates at the upper yield point and continues at the lower ...

  5. Mohr's circle - Wikipedia

    en.wikipedia.org/wiki/Mohr's_circle

    As an example, let's assume we have a state of stress with stress components ,, ,, and ,, as shown on Figure 7. First, we can draw a line from point B {\displaystyle B} parallel to the plane of action of σ x {\displaystyle \sigma _{x}} , or, if we choose otherwise, a line from point A {\displaystyle A} parallel to the plane of action of σ y ...

  6. Stress–strain analysis - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_analysis

    Stress analysis is specifically concerned with solid objects. The study of stresses in liquids and gases is the subject of fluid mechanics.. Stress analysis adopts the macroscopic view of materials characteristic of continuum mechanics, namely that all properties of materials are homogeneous at small enough scales.

  7. Ultimate tensile strength - Wikipedia

    en.wikipedia.org/wiki/Ultimate_tensile_strength

    The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.

  8. Rainflow-counting algorithm - Wikipedia

    en.wikipedia.org/wiki/Rainflow-counting_algorithm

    Figure 3: Rainflow analysis for tensile peaks. The stress history in Figure 2 is reduced to tensile peaks in Figure 3 and compressive valleys in Figure 4. From the tensile peaks in Figure 3: The first half-cycle starts at tensile peak 1 and terminates opposite a greater tensile stress, peak 3 (case c); its magnitude is 16 MPa (2 - (-14) = 16).

  9. Strain energy - Wikipedia

    en.wikipedia.org/wiki/Strain_energy

    In a molecule, strain energy is released when the constituent atoms are allowed to rearrange themselves in a chemical reaction. [1] The external work done on an elastic member in causing it to distort from its unstressed state is transformed into strain energy which is a form of potential energy.