When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Extraneous and missing solutions - Wikipedia

    en.wikipedia.org/wiki/Extraneous_and_missing...

    Therefore, the solution = is extraneous and not valid, and the original equation has no solution. For this specific example, it could be recognized that (for the value x = − 2 {\displaystyle x=-2} ), the operation of multiplying by ( x − 2 ) ( x + 2 ) {\displaystyle (x-2)(x+2)} would be a multiplication by zero.

  3. Lewy's example - Wikipedia

    en.wikipedia.org/wiki/Lewy's_example

    Lewy's example takes this latter equation and in a sense translates its non-solvability to every point of . The method of proof uses a Baire category argument, so in a certain precise sense almost all equations of this form are unsolvable. Mizohata (1962) later found that the even simpler equation

  4. Abel–Ruffini theorem - Wikipedia

    en.wikipedia.org/wiki/Abel–Ruffini_theorem

    This is the case of the equation = for any n, and the equations defined by cyclotomic polynomials, all of whose solutions can be expressed in radicals. Abel's proof of the theorem does not explicitly contain the assertion that there are specific equations that cannot be solved by radicals.

  5. Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_Last_Theorem

    Thus, to prove that Fermat's equation has no solutions for n > 2, it would suffice to prove that it has no solutions for at least one prime factor of every n. Each integer n > 2 is divisible by 4 or by an odd prime number (or both). Therefore, Fermat's Last Theorem could be proved for all n if it could be proved for n = 4 and for all odd primes p.

  6. List of unsolved problems in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.

  7. Proof of impossibility - Wikipedia

    en.wikipedia.org/wiki/Proof_of_impossibility

    One of the widely used types of impossibility proof is proof by contradiction.In this type of proof, it is shown that if a proposition, such as a solution to a particular class of equations, is assumed to hold, then via deduction two mutually contradictory things can be shown to hold, such as a number being both even and odd or both negative and positive.

  8. Overdetermined system - Wikipedia

    en.wikipedia.org/wiki/Overdetermined_system

    However, there is no solution that satisfies all three simultaneously. Diagrams #2 and 3 show other configurations that are inconsistent because no point is on all of the lines. Systems of this variety are deemed inconsistent. The only cases where the overdetermined system does in fact have a solution are demonstrated in Diagrams #4, 5, and 6.

  9. Consistent and inconsistent equations - Wikipedia

    en.wikipedia.org/wiki/Consistent_and...

    The system + =, + = has exactly one solution: x = 1, y = 2 The nonlinear system + =, + = has the two solutions (x, y) = (1, 0) and (x, y) = (0, 1), while + + =, + + =, + + = has an infinite number of solutions because the third equation is the first equation plus twice the second one and hence contains no independent information; thus any value of z can be chosen and values of x and y can be ...