When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Riemann integral - Wikipedia

    en.wikipedia.org/wiki/Riemann_integral

    Moreover, a function f defined on a bounded interval is Riemann-integrable if and only if it is bounded and the set of points where f is discontinuous has Lebesgue measure zero. An integral which is in fact a direct generalization of the Riemann integral is the Henstock–Kurzweil integral .

  3. Riemann–Stieltjes integral - Wikipedia

    en.wikipedia.org/wiki/Riemann–Stieltjes_integral

    The Riemann–Stieltjes integral appears in the original formulation of F. Riesz's theorem which represents the dual space of the Banach space C[a,b] of continuous functions in an interval [a,b] as Riemann–Stieltjes integrals against functions of bounded variation. Later, that theorem was reformulated in terms of measures.

  4. Multiple integral - Wikipedia

    en.wikipedia.org/wiki/Multiple_integral

    The Riemann integral of a function defined over an arbitrary bounded n-dimensional set can be defined by extending that function to a function defined over a half-open rectangle whose values are zero outside the domain of the original function. Then the integral of the original function over the original domain is defined to be the integral of ...

  5. Integral - Wikipedia

    en.wikipedia.org/wiki/Integral

    Although all bounded piecewise continuous functions are Riemann-integrable on a bounded interval, subsequently more general functions were considered—particularly in the context of Fourier analysis—to which Riemann's definition does not apply, and Lebesgue formulated a different definition of integral, founded in measure theory (a subfield ...

  6. Limits of integration - Wikipedia

    en.wikipedia.org/wiki/Limits_of_integration

    of a Riemann integrable function defined on a closed and bounded interval are the real numbers and , in which is called the lower limit and the upper limit. The region that is bounded can be seen as the area inside a {\displaystyle a} and b {\displaystyle b} .

  7. Thomae's function - Wikipedia

    en.wikipedia.org/wiki/Thomae's_function

    The Lebesgue criterion for integrability states that a bounded function is Riemann integrable if and only if the set of all discontinuities has measure zero. [5] Every countable subset of the real numbers - such as the rational numbers - has measure zero, so the above discussion shows that Thomae's function is Riemann integrable on any interval.

  8. Riemann–Lebesgue lemma - Wikipedia

    en.wikipedia.org/wiki/Riemann–Lebesgue_lemma

    A version holds for Fourier series as well: if is an integrable function on a bounded interval, then the Fourier coefficients ^ of tend to 0 as . This follows by extending f {\displaystyle f} by zero outside the interval, and then applying the version of the Riemann–Lebesgue lemma on the entire real line.

  9. Improper integral - Wikipedia

    en.wikipedia.org/wiki/Improper_integral

    The narrow definition of the Riemann integral also does not cover the function / on the interval [0, 1]. The problem here is that the integrand is unbounded in the domain of integration. In other words, the definition of the Riemann integral requires that both the domain of integration and the integrand be bounded. However, the improper ...