Search results
Results From The WOW.Com Content Network
The classic proof that the square root of 2 is irrational is a refutation by contradiction. [11] Indeed, we set out to prove the negation ¬ ∃ a, b ∈ N {\displaystyle \mathbb {N} } . a/b = √ 2 by assuming that there exist natural numbers a and b whose ratio is the square root of two, and derive a contradiction.
In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction [1] used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. [2]
One of the widely used types of impossibility proof is proof by contradiction.In this type of proof, it is shown that if a proposition, such as a solution to a particular class of equations, is assumed to hold, then via deduction two mutually contradictory things can be shown to hold, such as a number being both even and odd or both negative and positive.
In proof by contradiction, also known by the Latin phrase reductio ad absurdum (by reduction to the absurd), it is shown that if some statement is assumed true, a logical contradiction occurs, hence the statement must be false. A famous example involves the proof that is an irrational number:
The Pythagorean method would have claimed that there must be some sufficiently small, indivisible unit that could fit evenly into one of these lengths as well as the other. Hippasus in the 5th century BC, however, was able to deduce that there was no common unit of measure, and that the assertion of such an existence was a contradiction.
Written in 1873, this proof uses the characterization of as the smallest positive number whose half is a zero of the cosine function and it actually proves that is irrational. [3] [4] As in many proofs of irrationality, it is a proof by contradiction.
The two first subsections, are proofs of the generalized version of Euclid's lemma, namely that: if n divides ab and is coprime with a then it divides b. The original Euclid's lemma follows immediately, since, if n is prime then it divides a or does not divide a in which case it is coprime with a so per the generalized version it divides b.
Proofs of the mathematical result that the rational number 22 / 7 is greater than π (pi) date back to antiquity. One of these proofs, more recently developed but requiring only elementary techniques from calculus, has attracted attention in modern mathematics due to its mathematical elegance and its connections to the theory of Diophantine approximations.