When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Potentiometric surface - Wikipedia

    en.wikipedia.org/wiki/Potentiometric_surface

    A potentiometric surface is the imaginary plane where a given reservoir of fluid will "equalize out to" if allowed to flow. A potentiometric surface is based on hydraulic principles. For example, two connected storage tanks with one full and one empty will gradually fill/drain to the same level.

  3. Aquifer test - Wikipedia

    en.wikipedia.org/wiki/Aquifer_test

    Steady-state radial flow to a pumping well is commonly called the Thiem solution, [2] it comes about from application of Darcy's law to cylindrical shell control volumes (i.e., a cylinder with a larger radius which has a smaller radius cylinder cut out of it) about the pumping well; it is commonly written as:

  4. Equipotential - Wikipedia

    en.wikipedia.org/wiki/Equipotential

    If a and b are any two points within or at the surface of a given conductor, and given there is no flow of charge being exchanged between the two points, then the potential difference is zero between the two points. Thus, an equipotential would contain both points a and b as they have the same potential. Extending this definition, an ...

  5. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    A ruled surface is one which can be generated by the motion of a straight line in E 3. [46] Choosing a directrix on the surface, i.e. a smooth unit speed curve c(t) orthogonal to the straight lines, and then choosing u(t) to be unit vectors along the curve in the direction of the lines, the velocity vector v = c t and u satisfy

  6. Tangent vector - Wikipedia

    en.wikipedia.org/wiki/Tangent_vector

    In mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in R n. More generally, tangent vectors are elements of a tangent space of a differentiable manifold.

  7. Generalized Stokes theorem - Wikipedia

    en.wikipedia.org/wiki/Generalized_Stokes_theorem

    In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or , and the divergence theorem is the case of a volume in . [2] Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus.

  8. Surface integral - Wikipedia

    en.wikipedia.org/wiki/Surface_integral

    Given a surface, one may integrate over this surface a scalar field (that is, a function of position which returns a scalar as a value), or a vector field (that is, a function which returns a vector as value). If a region R is not flat, then it is called a surface as shown in the illustration.

  9. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    The calculus of variations may be said to begin with Newton's minimal resistance problem in 1687, followed by the brachistochrone curve problem raised by Johann Bernoulli (1696). [2] It immediately occupied the attention of Jacob Bernoulli and the Marquis de l'Hôpital , but Leonhard Euler first elaborated the subject, beginning in 1733.