When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Saturation (magnetic) - Wikipedia

    en.wikipedia.org/wiki/Saturation_(magnetic)

    Seen in some magnetic materials, saturation is the state reached when an increase in applied external magnetic field H cannot increase the magnetization of the material further, so the total magnetic flux density B more or less levels off.

  3. Magnetic hysteresis - Wikipedia

    en.wikipedia.org/wiki/Magnetic_hysteresis

    The intercepts h c and m rs are the coercivity and saturation remanence. Magnetic hysteresis occurs when an external magnetic field is applied to a ferromagnet such as iron and the atomic dipoles align themselves with it. Even when the field is removed, part of the alignment will be retained: the material has become magnetized. Once magnetized ...

  4. Stoner–Wohlfarth model - Wikipedia

    en.wikipedia.org/wiki/Stoner–Wohlfarth_model

    The magnetic field is only varied along a single axis; its scalar value h is positive in one direction and negative in the opposite direction. The ferromagnet is assumed to have a uniaxial magnetic anisotropy with anisotropy parameter K u. As the magnetic field varies, the magnetization is restricted to the plane containing the magnetic field ...

  5. Hysteresis - Wikipedia

    en.wikipedia.org/wiki/Hysteresis

    The intercepts h c and m rs are the coercivity and saturation remanence. When an external magnetic field is applied to a ferromagnetic material such as iron, the atomic domains align themselves with it. Even when the field is removed, part of the alignment will be retained: the material has become magnetized. Once magnetized, the magnet will ...

  6. Magnetostriction - Wikipedia

    en.wikipedia.org/wiki/Magnetostriction

    The variation of materials' magnetization due to the applied magnetic field changes the magnetostrictive strain until reaching its saturation value, λ. The effect was first identified in 1842 by James Joule when observing a sample of iron. [1] Magnetostriction applies to magnetic fields, while electrostriction applies to electric fields.

  7. Magnetic field - Wikipedia

    en.wikipedia.org/wiki/Magnetic_field

    The magnetic field of permanent magnets can be quite complicated, especially near the magnet. The magnetic field of a small [note 6] straight magnet is proportional to the magnet's strength (called its magnetic dipole moment m). The equations are non-trivial and depend on the distance from the magnet and the orientation of the magnet.

  8. Magnetic circuit - Wikipedia

    en.wikipedia.org/wiki/Magnetic_circuit

    Magnetic field (green) induced by a current-carrying wire winding (red) in a magnetic circuit consisting of an iron core C forming a closed loop with two air gaps G in it. In an analogy to an electric circuit, the winding acts analogously to an electric battery, providing the magnetizing field , the core pieces act like wires, and the gaps G act like resistors.

  9. Coercivity - Wikipedia

    en.wikipedia.org/wiki/Coercivity

    Equivalent definitions for coercivities in terms of the magnetization-vs-field (M-H) curve, for the same magnet. Coercivity in a ferromagnetic material is the intensity of the applied magnetic field (H field) required to demagnetize that material, after the magnetization of the sample has been driven to saturation by a strong field. This ...