When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g.More precisely, if = is the function such that () = (()) for every x, then the chain rule is, in Lagrange's notation, ′ = ′ (()) ′ (). or, equivalently, ′ = ′ = (′) ′.

  3. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    It is particularly common when the equation y = f(x) is regarded as a functional relationship between dependent and independent variables y and x. Leibniz's notation makes this relationship explicit by writing the derivative as: [ 1 ] d y d x . {\displaystyle {\frac {dy}{dx}}.}

  4. Leibniz's notation - Wikipedia

    en.wikipedia.org/wiki/Leibniz's_notation

    Gottfried Wilhelm von Leibniz (1646–1716), German philosopher, mathematician, and namesake of this widely used mathematical notation in calculus.. In calculus, Leibniz's notation, named in honor of the 17th-century German philosopher and mathematician Gottfried Wilhelm Leibniz, uses the symbols dx and dy to represent infinitely small (or infinitesimal) increments of x and y, respectively ...

  5. Bernoulli differential equation - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_differential...

    Some authors allow any real , [1] [2] whereas others require that not be 0 or 1. [ 3 ] [ 4 ] The equation was first discussed in a work of 1695 by Jacob Bernoulli , after whom it is named. The earliest solution, however, was offered by Gottfried Leibniz , who published his result in the same year and whose method is the one still used today.

  6. Clairaut's equation - Wikipedia

    en.wikipedia.org/wiki/Clairaut's_equation

    Clairaut, Alexis Claude (1734), "Solution de plusieurs problèmes où il s'agit de trouver des Courbes dont la propriété consiste dans une certaine relation entre leurs branches, exprimée par une Équation donnée.", Histoire de l'Académie Royale des Sciences: 196– 215.

  7. Integral of inverse functions - Wikipedia

    en.wikipedia.org/wiki/Integral_of_inverse_functions

    It was rediscovered in 1955 by Parker, [6] and by a number of mathematicians following him. [7] Nevertheless, they all assume that f or f −1 is differentiable . The general version of the theorem , free from this additional assumption, was proposed by Michael Spivak in 1965, as an exercise in the Calculus , [ 2 ] and a fairly complete proof ...

  8. Implicit function theorem - Wikipedia

    en.wikipedia.org/wiki/Implicit_function_theorem

    The unit circle can be specified as the level curve f(x, y) = 1 of the function f(x, y) = x 2 + y 2.Around point A, y can be expressed as a function y(x).In this example this function can be written explicitly as () =; in many cases no such explicit expression exists, but one can still refer to the implicit function y(x).

  9. Dilogarithm - Wikipedia

    en.wikipedia.org/wiki/Dilogarithm

    The dilogarithm along the real axis. In mathematics, the dilogarithm (or Spence's function), denoted as Li 2 (z), is a particular case of the polylogarithm.Two related special functions are referred to as Spence's function, the dilogarithm itself:

  1. Related searches find dy/dx if y=ln(x^2+y^2) 10 7 1 5 cua 22tcn 272 05

    7.1.5 wow7.1.5 patch notes
    7 1/5 as a decimal7 1/5 - 6 2/5