Search results
Results From The WOW.Com Content Network
This is an accepted version of this page This is the latest accepted revision, reviewed on 8 January 2025. German mathematician, astronomer, geodesist, and physicist (1777–1855) "Gauss" redirects here. For other uses, see Gauss (disambiguation). Carl Friedrich Gauss Portrait by Christian Albrecht Jensen, 1840 (copy from Gottlieb Biermann, 1887) Born Johann Carl Friedrich Gauss (1777-04-30 ...
The gauss (symbol: G, sometimes Gs) is a unit of measurement of magnetic induction, also known as magnetic flux density. The unit is part of the Gaussian system of units, which inherited it from the older centimetre–gram–second electromagnetic units (CGS-EMU) system.
Carl Friedrich Gauss. Gaussian units constitute a metric system of units of measurement. This system is the most common of the several electromagnetic unit systems based on the centimetre–gram–second system of units (CGS). It is also called the Gaussian unit system, Gaussian-cgs units, or often just cgs units.
Gauss's lemma is used in many, [3]: Ch. 1 [3]: 9 but by no means all, of the known proofs of quadratic reciprocity. For example, Gotthold Eisenstein [ 3 ] : 236 used Gauss's lemma to prove that if p is an odd prime then
Carl Friedrich Gauss (1777–1855) Carl Friedrich Gauss (1777–1855) is the eponym of all of the topics listed below. There are over 100 topics all named after this German mathematician and scientist, all in the fields of mathematics, physics, and astronomy.
The Gaussian function is the archetypal example of a bell shaped function. A bell-shaped function or simply 'bell curve' is a mathematical function having a characteristic "bell"-shaped curve.
In physics (specifically electromagnetism), Gauss's law, also known as Gauss's flux theorem (or sometimes Gauss's theorem), is one of Maxwell's equations. It is an application of the divergence theorem , and it relates the distribution of electric charge to the resulting electric field .
A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.