Search results
Results From The WOW.Com Content Network
This list of sequenced eubacterial genomes contains most of the eubacteria known to have publicly available complete genome sequences.Most of these sequences have been placed in the International Nucleotide Sequence Database Collaboration, a public database which can be searched [1] on the web.
Bacterial conjugation is the transfer of genetic material (plasmid) between bacterial cells by direct cell-to-cell contact or by a bridge-like connection between two cells. [1] Discovered in 1946 by Joshua Lederberg and Edward Tatum, [ 2 ] conjugation is a mechanism of horizontal gene transfer as are transformation and transduction although ...
Gene transfer systems that have been extensively studied in bacteria include genetic transformation, conjugation and transduction. Natural transformation is a bacterial adaptation for DNA transfer between two cells through the intervening medium. The uptake of donor DNA and its recombinational incorporation into the recipient chromosome depends ...
Bacterial genomes can range in size anywhere from about 130 kbp [1] [2] to over 14 Mbp. [3] A study that included, but was not limited to, 478 bacterial genomes, concluded that as genome size increases, the number of genes increases at a disproportionately slower rate in eukaryotes than in non-eukaryotes.
It is a diploid monocot with 10 large chromosome pairs, easily studied with the microscope. Its genetic features, including many known and mapped phenotypic mutants and a large number of progeny per cross (typically 100–200) facilitated the discovery of transposons ("jumping genes"). Many DNA markers have been mapped and the genome has been ...
Integrative and conjugative elements (ICEs) are mobile genetic elements present in both gram-positive and gram-negative bacteria.In a donor cell, ICEs are located primarily on the chromosome, but have the ability to excise themselves from the genome and transfer to recipient cells via bacterial conjugation.
The term plasmid was coined in 1952 by the American molecular biologist Joshua Lederberg to refer to "any extrachromosomal hereditary determinant." [11] [12] The term's early usage included any bacterial genetic material that exists extrachromosomally for at least part of its replication cycle, but because that description includes bacterial viruses, the notion of plasmid was refined over time ...
Natural transformation is a bacterial adaptation for DNA transfer that depends on the expression of numerous bacterial genes whose products appear to be responsible for this process. [20] [19] In general, transformation is a complex, energy-requiring developmental process. In order for a bacterium to bind, take up and recombine exogenous DNA ...