Search results
Results From The WOW.Com Content Network
In mathematics, exponentiation, denoted b n, is an operation involving two numbers: the base, b, and the exponent or power, n. [1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases: [1] = ⏟.
Similar asymptotic analysis is possible for exponential generating functions; with an exponential generating function, it is a n / n! that grows according to these asymptotic formulae. Generally, if the generating function of one sequence minus the generating function of a second sequence has a radius of convergence that is larger than ...
Here is a basic example involving the exponential function, which involves the indeterminate form 0 / 0 at x = 0: + = (+) = + = This is a more elaborate example involving 0 / 0 . Applying L'Hôpital's rule a single time still results in an indeterminate form.
Often the independent variable is time. Described as a function, a quantity undergoing exponential growth is an exponential function of time, that is, the variable representing time is the exponent (in contrast to other types of growth, such as quadratic growth). Exponential growth is the inverse of logarithmic growth.
The term exponential class is sometimes used in place of "exponential family", [1] or the older term Koopman–Darmois family. Sometimes loosely referred to as the exponential family, this class of distributions is distinct because they all possess a variety of desirable properties, most importantly the existence of a sufficient statistic .
Therefore, the Fourier transform goes from one space of functions to a different space of functions: functions which have a different domain of definition. In general, ξ {\displaystyle \xi } must always be taken to be a linear form on the space of its domain, which is to say that the second real line is the dual space of the first real line.
Class is the intersection of the sets as varies over the non-negative integers, and the members of this class are known as the smooth functions. Class C ω {\displaystyle C^{\omega }} consists of all analytic functions , and is strictly contained in C ∞ {\displaystyle C^{\infty }} (see bump function for a smooth function that is not analytic).
The conjecture relies on analytic and arithmetic objects defined by the elliptic curve in question. At the analytic side, an important ingredient is a function of a complex variable, L, the Hasse–Weil zeta function of E over Q. This function is a variant of the Riemann zeta function and Dirichlet L-functions.