Search results
Results From The WOW.Com Content Network
Random forests or random decision forests is an ensemble learning method for classification, regression and other tasks that works by creating a multitude of decision trees during training. For classification tasks, the output of the random forest is the class selected by most trees.
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
Rotation forest – in which every decision tree is trained by first applying principal component analysis (PCA) on a random subset of the input features. [ 13 ] A special case of a decision tree is a decision list , [ 14 ] which is a one-sided decision tree, so that every internal node has exactly 1 leaf node and exactly 1 internal node as a ...
The algorithm was able to "discover" 100 equations from The Feynman Lectures on Physics, while a leading software using evolutionary algorithms, Eureqa, solved only 71. AI Feynman, in contrast to classic symbolic regression methods, requires a very large dataset in order to first train the neural network and is naturally biased towards ...
An ensemble of models employing the random subspace method can be constructed using the following algorithm: Let the number of training points be N and the number of features in the training data be D. Let L be the number of individual models in the ensemble. For each individual model l, choose n l (n l < N) to be the number of input points for l.
In Ensemble of Classifier Chains (ECC) several CC classifiers can be trained with random order of chains (i.e. random order of labels) on a random subset of data set. Labels of a new instance are predicted by each classifier separately. After that, the total number of predictions or "votes" is counted for each label.
In statistics and machine learning, lasso (least absolute shrinkage and selection operator; also Lasso, LASSO or L1 regularization) [1] is a regression analysis method that performs both variable selection and regularization in order to enhance the prediction accuracy and interpretability of the resulting statistical model.
The RANSAC algorithm is a learning technique to estimate parameters of a model by random sampling of observed data. Given a dataset whose data elements contain both inliers and outliers, RANSAC uses the voting scheme to find the optimal fitting result.