When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    5.3 Induction proofs. 5.4 Binet formula proofs. ... In mathematics, the Fibonacci sequence is a sequence in which each element is the sum of the two elements that ...

  3. Zeckendorf's theorem - Wikipedia

    en.wikipedia.org/wiki/Zeckendorf's_theorem

    The first part of Zeckendorf's theorem (existence) can be proven by induction. For n = 1, 2, 3 it is clearly true (as these are Fibonacci numbers), for n = 4 we have 4 = 3 + 1. If n is a Fibonacci number then there is nothing to prove. Otherwise there exists j such that F j < n < F j + 1 .

  4. Mathematical induction - Wikipedia

    en.wikipedia.org/wiki/Mathematical_induction

    In 370 BC, Plato's Parmenides may have contained traces of an early example of an implicit inductive proof, [5] however, the earliest implicit proof by mathematical induction was written by al-Karaji around 1000 AD, who applied it to arithmetic sequences to prove the binomial theorem and properties of Pascal's triangle.

  5. Cassini and Catalan identities - Wikipedia

    en.wikipedia.org/wiki/Cassini_and_Catalan_identities

    A quick proof of Cassini's identity may be given (Knuth 1997, p. 81) by recognising the left side of the equation as a determinant of a 2×2 matrix of Fibonacci numbers. The result is almost immediate when the matrix is seen to be the n th power of a matrix with determinant −1:

  6. Generalizations of Fibonacci numbers - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of...

    A Fibonacci sequence of order n is an integer sequence in which each sequence element is the sum of the previous elements (with the exception of the first elements in the sequence). The usual Fibonacci numbers are a Fibonacci sequence of order 2.

  7. Liber Abaci - Wikipedia

    en.wikipedia.org/wiki/Liber_Abaci

    Although the resulting Fibonacci sequence dates back long before Leonardo, [9] its inclusion in his book is why the sequence is named after him today. The fourth section derives approximations, both numerical and geometrical, of irrational numbers such as square roots. [10] The book also includes proofs in Euclidean geometry. [11]

  8. Carmichael's theorem - Wikipedia

    en.wikipedia.org/wiki/Carmichael's_theorem

    In number theory, Carmichael's theorem, named after the American mathematician R. D. Carmichael, states that, for any nondegenerate Lucas sequence of the first kind U n (P, Q) with relatively prime parameters P, Q and positive discriminant, an element U n with n ≠ 1, 2, 6 has at least one prime divisor that does not divide any earlier one except the 12th Fibonacci number F(12) = U 12 (1, − ...

  9. Formulas for generating Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Formulas_for_generating...

    In this section we shall use the Fibonacci Box in place of the primitive triple it represents. An infinite ternary tree containing all primitive Pythagorean triples/Fibonacci Boxes can be constructed by the following procedure. [10] Consider a Fibonacci Box containing two, odd, coprime integers x and y in the right-hand column.