When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mathematical induction - Wikipedia

    en.wikipedia.org/wiki/Mathematical_induction

    Mathematical induction can be informally illustrated by reference to the sequential effect of falling dominoes. [1] [2]Mathematical induction is a method for proving that a statement () is true for every natural number, that is, that the infinitely many cases (), (), (), (), … all hold.

  3. Structural induction - Wikipedia

    en.wikipedia.org/wiki/Structural_induction

    Structural induction is a proof method that is used in mathematical logic (e.g., in the proof of Łoś' theorem), computer science, graph theory, and some other mathematical fields. It is a generalization of mathematical induction over natural numbers and can be further generalized to arbitrary Noetherian induction .

  4. Solomonoff's theory of inductive inference - Wikipedia

    en.wikipedia.org/wiki/Solomonoff's_theory_of...

    The proof of this is derived from a game between the induction and the environment. Essentially, any computable induction can be tricked by a computable environment, by choosing the computable environment that negates the computable induction's prediction. This fact can be regarded as an instance of the no free lunch theorem.

  5. Peano axioms - Wikipedia

    en.wikipedia.org/wiki/Peano_axioms

    The ninth, final, axiom is a second-order statement of the principle of mathematical induction over the natural numbers, which makes this formulation close to second-order arithmetic. A weaker first-order system is obtained by explicitly adding the addition and multiplication operation symbols and replacing the second-order induction axiom with ...

  6. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    Then, by strong induction, assume this is true for all numbers greater than 1 and less than n. If n is prime, there is nothing more to prove. Otherwise, there are integers a and b, where n = a b, and 1 < a ≤ b < n. By the induction hypothesis, a = p 1 p 2 ⋅⋅⋅ p j and b = q 1 q 2 ⋅⋅⋅ q k are products of primes.

  7. Well-ordering principle - Wikipedia

    en.wikipedia.org/wiki/Well-ordering_principle

    Then show that for any counterexample there is a still smaller counterexample, producing a contradiction. This mode of argument is the contrapositive of proof by complete induction. It is known light-heartedly as the "minimal criminal" method [citation needed] and is similar in its nature to Fermat's method of "infinite descent".

  8. All horses are the same color - Wikipedia

    en.wikipedia.org/wiki/All_horses_are_the_same_color

    All horses are the same color is a falsidical paradox that arises from a flawed use of mathematical induction to prove the statement All horses are the same color. [1] There is no actual contradiction, as these arguments have a crucial flaw that makes them incorrect.

  9. Induction, bounding and least number principles - Wikipedia

    en.wikipedia.org/wiki/Induction,_bounding_and...

    The induction, bounding and least number principles are commonly used in reverse mathematics and second-order arithmetic. For example, I Σ 1 {\displaystyle {\mathsf {I}}\Sigma _{1}} is part of the definition of the subsystem R C A 0 {\displaystyle {\mathsf {RCA}}_{0}} of second-order arithmetic.