Search results
Results From The WOW.Com Content Network
Python uses the following syntax to express list comprehensions over finite lists: S = [ 2 * x for x in range ( 100 ) if x ** 2 > 3 ] A generator expression may be used in Python versions >= 2.4 which gives lazy evaluation over its input, and can be used with generators to iterate over 'infinite' input such as the count generator function which ...
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.
The actual statement is in columns 7 through 72 of a line. Any non-space character in column 6 indicates that this line is a continuation of the prior line. A 'C' in column 1 indicates that this entire line is a comment. Columns 1 though 5 may contain a number which serves as a label.
In Python, the set-builder's braces are replaced with square brackets, parentheses, or curly braces, giving list, generator, and set objects, respectively. Python uses an English-based syntax. Haskell replaces the set-builder's braces with square brackets and uses symbols, including the standard set-builder vertical bar.
for key «to upb list» do «typename val=list[key];» statements od «while condition» do statements od «while statements; condition» do statements od «for index» «from first» «by increment» «to last» do statements od: APL:While condition statements:EndWhile:Repeat statements:Until condition:For var«s»:In list statements:EndFor ...
Python's is operator may be used to compare object identities (comparison by reference), and comparisons may be chained—for example, a <= b <= c. Python uses and, or, and not as Boolean operators. Python has a type of expression named a list comprehension, and a more general expression named a generator expression. [78]
The literature on programming languages contains an abundance of informal claims about their relative expressive power, but there is no framework for formalizing such statements nor for deriving interesting consequences. [52] This table provides two measures of expressiveness from two different sources.
In computer science, a for-loop or for loop is a control flow statement for specifying iteration. Specifically, a for-loop functions by running a section of code repeatedly until a certain condition has been satisfied. For-loops have two parts: a header and a body. The header defines the iteration and the body is the code executed once per ...